精英家教网 > 初中数学 > 题目详情
5.已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.
(1)如图1,连接BD,AF,则BD=AF(填“>”、“<”或“=”);
(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.

分析 (1)根据等腰三角形的性质,可得∠ABC与∠ACB的关系,根据平移的性质,可得AC与DF的关系,根据全等三角形的判定与性质,可得答案;
(2)根据相似三角形的判定与性质,可得GM与HN的关系,BM与FN的关系,根据全等三角形的判定与性质,可得答案.

解答 (1)解:由AB=AC,
得∠ABC=ACB.
由△ABC沿BC方向平移得到△DEF,
得DF=AC,∠DFE=∠ACB.
在△ABF和△DFB中,
$\left\{\begin{array}{l}{AB=DF}\\{∠ABF=∠DFB}\\{BF=FB}\end{array}\right.$,
△ABF≌△DFB(SAS),
BD=AF,
故答案为:BD=AF;
(2)证明:如图:

MN∥BF,
△AMG∽△ABC,△DHN∽△DEF,
$\frac{MG}{BC}$=$\frac{AM}{AB}$=$\frac{ND}{DF}$,$\frac{HN}{EF}$=$\frac{DN}{DF}$,
∴MG=HN,MB=NF.
在△BMH和△FNG中,
$\left\{\begin{array}{l}{BM=FN}\\{∠BMH=∠FNG}\\{MH=NG}\end{array}\right.$,
△BMH≌△FNG(SAS),
∴BH=FG.

点评 本题考查了全等三角形的判定与性质,利用了平移的性质,相似三角形的判定与性质,全等三角形的判定与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.在-2,1,2,1,4,6中正确的是(  )
A.平均数3B.众数是-2C.极差为8D.中位数是1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知反比例函数y=$\frac{{k}_{1}}{x}$与一次函数y=k2x+b的图象交于点A(1,8)、B(-4,m).
(1)求k1、k2、b的值;
(2)求△AOB的面积;
(3)若M(x1,y1)、N(x2,y2)是反比例函数y=$\frac{{k}_{1}}{x}$图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知抛物线y=$\frac{1}{2}$x2+c与x轴交于A(-1,0),B两点,交y轴于点C.

(1)求抛物线的解析式;
(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG.求n的值并直接写出m的取值范围(利用图1完成你的探究).
(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC的长,则下列按键顺序正确的是(  )
A.5÷tan26°=B.5÷sin26°=C.5×cos26°=D.5×tan26°=

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,直线y=k1x与反比例函数y=$\frac{k}{x}$(k≠0)的图象交于点A,B,直线y=k2x与反比例函数y=$\frac{k}{x}$的图象交于点C,D,且k1•k2≠0,k1≠k2,顺次连接A,D,B,C,AD,BC分别交x轴于点F,H,交y轴于点E,G,连接FG,EH.
(1)四边形ADBC的形状是平行四边形;
(2)如图2,若点A的坐标为(2,4),四边形AEHC是正方形,则k2=$\frac{1}{2}$;
(3)如图3,若四边形EFGH为正方形,点A的坐标为(2,6),求点C的坐标;
(4)判断:随着k1、k2取值的变化,四边形ADBC能否为正方形?若能,求点A的坐标;若不能,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD的中点.若AC=10,DC=2$\sqrt{5}$,则BO=5,∠EBD的大小约为18度26分.(参考数据:tan26°34′≈$\frac{1}{2}$)

查看答案和解析>>

同步练习册答案