精英家教网 > 初中数学 > 题目详情
1.已知△ABC,△BEF都是等腰直角三角形,∠ABC=∠BEF=90°,连AF、CF,点M为AF的中点,连EM,将△BEF绕点B旋转.
(1)如图1,猜想CF与EM的数量关系CF=2EM;
(2)利用你所学的知识,证明你(1)中得到的结论;
(3)如图2,过B点作BN⊥EM,交ME的延长线于N点,若BN=4,EN=2,BC=10,请求出此时∠CBF与∠BCF之间的数量关系.

分析 (1)CF与EM的数量关系为CF=2EM;
(2)延长FE到点G,使EG=EF,如图1,连结AG、BG,先证明ME为△FAG的中位线得到AG=2ME,再证明△ABG≌△CBF得到AG=CF,于是有CF=2EM;
(3)延长FE到点G,使EG=EF,如图2,连结AG、BG,作FH⊥ME于H,交AG于L,延长BN交AG于K,由△ABG≌△CBF得AG=CF,再证明△FEH≌△EBN得到FH=EN=2,HE=BN=4,利用ME为△FAG的中位线得到FH=HL=2,ME∥AG,接着利用四边形HLKN为矩形得到NK=HL=2,KL=HN=6,所以BK=6,于是利用勾股定理可计算出AK=8,然后求出AG=10,这样可得到CB=CF,则∠CFB=∠CBF,最后利用三角形内角和确定∠CBF与∠BCF之间的数量关系.

解答 (1)解:CF与EM的数量关系为CF=2EM;
故答案为CF=2EM;
(2)证明:延长FE到点G,使EG=EF,如图1,连结AG、BG,
∵M点为AF的中点,
而EF=EG,
∴ME为△FAG的中位线,
∴AG=2ME,
∵△BEF为等腰直角三角形,
∴∠BEF=90°,BE=EF,
而EF=EG,
∴△BEG为等腰直角三角形,
∴∠BGE=∠EBG=45°,
∴△FBG为等腰直角三角形,
∴BF=BG,∠FBG=90°,
∵∠ABG+∠ABF=90°,∠CBF+∠ABF=90°,
∴∠ABG=∠CBF,
在△ABG和△CBF中
$\left\{\begin{array}{l}{BA=BC}\\{∠ABG=∠CBF}\\{BG=BF}\end{array}\right.$,
∴△ABG≌△CBF,
∴AG=CF,
∴CF=2ME;
(3)延长FE到点G,使EG=EF,如图2,连结AG、BG,作FH⊥ME于H,交AG于L,延长BN交AG于K,
由(2)得△ABG≌△CBF,
∴AG=CF,
∵∠FEH+∠BEN=90°,∠EBN+∠BEN=90°,
∴∠FEH=∠EBN,
在△FEH和△EBN中
$\left\{\begin{array}{l}{∠FHE=∠BNE}\\{∠FEH=∠EBN}\\{FE=EB}\end{array}\right.$,
∴△FEH≌△EBN,
∴FH=EN=2,HE=BN=4,
∵ME为△FAG的中位线,
∴FH=HL=2,ME∥AG,
易得四边形HLKN为矩形,
∴NK=HL=2,KL=HN=4=2=6,
∴BK=BN+NK=4+2=6,
在Rt△ABK中,BA=BC=10,BK=6,
∴AK=$\sqrt{1{0}^{2}-{6}^{2}}$=8,
∴AL=AK-KL=8-6=2,
∵EH∥GL,EF=EG,
∴GL=2EH=8,
∴AG=AL+LG=2+8=10,
∴AB=AC,
∴CB=CF,
∴∠CFB=∠CBF,
而∠CFB+∠CBF+∠BCF=180°,
∴2∠CBF+∠BCF=180°,
即∠CBF=90°-$\frac{1}{2}$∠BCF.

点评 本题考查了几何变换综合题:熟练掌握旋转的性质和等腰直角三角形的性质;利用线段中点构建三角形中位线得到线段之间的位置关系与数量关系;会利用全等三角形的知识解决线段相等的问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.已知,正n边形的一个内角为140°,则这个正n边形的边数是9.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知圆锥底面半径为2,母线长为5,则此圆锥侧面展开图的面积是(  )
A.B.10πC.D.20π

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,一个边长为4cm的等边三角形的高与ABC与⊙O直径相等,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为3cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)
(参考数据:sin48°≈$\frac{7}{10}$,tan48°≈$\frac{11}{10}$,sin64°≈$\frac{9}{10}$,tan64°≈2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在矩形ABCD中,边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处(如图1).
(1)如图2,设折痕与边BC交于点O,连接,OP、OA.已知△OCP与△PDA的面积比为1:4,求边AB的长;
(2)动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN、CA,交于点F,过点M作ME⊥BP于点E.
①在图1中画出图形;
②在△OCP与△PDA的面积比为1:4不变的情况下,试问动点M、N在移动的过程中,线段EF的长度是否发生变化?请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.古希腊毕达哥拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数位正方形数(四边形数).
(1)请你写出既是三角形数又是正方形数且大于1的最小正整数为36;
(2)试证明:当k为正整数时,k(k+1)(k+2)(k+3)+1必须为正方形数;
(3)记第n个k变形数位N(n,k)(k≥3).例如N(1,3)=1,N(2,3)=3,N(2,4)=4.
①试直接写出N(n,3)N(n,4)的表达式;
②通过进一步的研究发现N(n,5)=$\frac{3}{2}$n2-$\frac{1}{2}$n,N(n,6)=2n2-n,…,请你推测N(n,k)(k≥3)的表达式,并由此计算N(10,24)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.今年泉州元宵期间,某数学兴趣小组为了了解游客最喜欢的花灯类型,随机抽取部分游客进行调查,并将调查的结果绘制成下面两幅不完整的统计图:

(1)本次共抽取的游客人数为1000,“传统”型所对应的圆心角为144°;
(2)将条形统计图补充完整;
(3)据了解,今年观赏花灯的游客约100万人,请你估计“最喜欢现代型”花灯的人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知二次函数y=$a{x}^{2}+\frac{3}{2}x+c$的图象与y轴交于点A(0,4),与x轴交于点B,C,点C的坐标为(8,0),连接AB、AC.
(1)请直接写出二次函数y=$a{x}^{2}+\frac{3}{2}x+c$的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;
(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.

查看答案和解析>>

同步练习册答案