精英家教网 > 初中数学 > 题目详情
如图,直线l上有三个正方形a,b,c,若a,b的面积分别为13和21,则c的面积为(  )
分析:运用正方形边长相等,结合全等三角形和勾股定理来求解即可.
解答:解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°,
∵∠ACB+∠DCE=∠ACB+∠BAC=90°,
即∠BAC=∠DCE,
在△ACB和△DCE中,
∠BAC=∠DCE
∠ABC=∠CED=90°
AC=CD

∴△ACB≌△DCE(AAS),
∴AB=CE,BC=DE;
在Rt△ABC中,
由勾股定理得:AC2=AB2+BC2=AB2+DE2
即Sc=Sa+Sb=13+21=34.
故选C.
点评:此题主要考查对全等三角形和勾股定理的综合运用,根据三角形全等找出相等的量是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为
16

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和13,则b的面积为(  )
A、20
B、2
5
C、91
D、
91

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和11,则c的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线l上有三个正方形a,b,c,若a,c的面积分别为6和9,则b的面积为(  )

查看答案和解析>>

同步练习册答案