【题目】已知:抛物线与直线y=x+3分别交于x轴和y轴上同一点,交点分别是点A和点C,且抛物线的对称轴为直线x=-2.
(1)求出抛物线与x轴的两个交点A、B的坐标.
(2)试确定抛物线的解析式.
(3)观察图象,请直接写出二次函数值小于一次函数值的自变量x的取值范围.
【答案】(1)点A的坐标为(3,0),点B的坐标是(1,0);(2)y=x2+4x+3,(3)3<x<0
【解析】
(1)根据已知得出点A、C的坐标,再利用点A与点B关于直线x=2对称,即可求出B点坐标;
(2)利用待定系数法求二次函数解析式,即可得出答案;
(3)由图象观察可知,二次函数值小于一次函数值时,得出x的取值范围.
(1)y=x+3中,
当y=0时,x=3,
∴点A的坐标为(3,0),
当x=0时,y=3,
∴点C坐标为(0,3),
∵抛物线的对称轴为直线x=2,
∴点A与点B关于直线x=2对称,
∴点B的坐标是(1,0);
(2)设二次函数的解析式为y=ax2+bx+c(a≠0),
∵二次函数的图象经过点C(0,3)和点A(3,0),且对称轴是直线x=2,
∴可列得方程组:,
解得:,
∴二次函数的解析式为y=x2+4x+3,
(3)由图象观察可知,当3<x<0时,二次函数值小于一次函数值.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数
的图象交于第二、第四象限内的A、B两点,与
轴交于点C,过点A作AH⊥
轴,垂足为点H,OH=3,tan∠AOH=
,点B的坐标为(
,-2).
(1)求该反比例函数和一次函数的解析式;
(2)求△AHO的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G为FC的中点,连接GD,ED.
(1)如图①,E在AB上,直接写出ED,GD的数量关系.
(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.
(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线上最高点坐标为(-1,4),且抛物线经过点B(1,0)
(1)求此抛物线的解析式;
(2)设抛物线与X轴另一个交点为A,交Y轴于点C,请在抛物线的对称轴上找一点P,使△PBC周长最小,并求出点P的坐标;
(3)点M是抛物线对称轴上一动点,点N是抛物线上一动点(不与点A,B重合),试问:是否存在点M,N,使得以点A、B、M、N为顶点的四边形是平行四边形?若存在,请求出点M、N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,
现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连结EQ.设动点运动时间为x秒.
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设的面积为
,求
与月份
的函数关系式,并写出自变量
的取值范围;
(3)当为何值时,
为直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形 ABCD 中,AB=3cm,动点 M 自A 点出发沿 AB 方向以每秒 1cm 的速度运动,同时点 N 自D 点出发沿折线 DC→CB 以每秒 2cm 的速度运动,到达 B 点时运动同时停止,设△AMN 的面积为 y(cm2),运动时间为 x(秒),则下列图象中能大致反映 y 与 x 之间函数关系的是( )
A.B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.
(1)该小区每月可收取物管费90 000元,问该小区共有多少套80平方米的住宅?
(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加,每户物管费将会减少
;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加
,每户物管费将会减少
.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少
,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某演唱会购买门票的方式有两种
方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元;(注方式一中总费用=广告费用+门票费用)
方式二:按如图所示的购买门票方式.
设购买门票x张,总费用为y万元.
(1)求按方式一购买时y与x的函数关系式
(2)若甲、乙两个单位分采用方式一,方式二购买本场演唱会门共400张,且乙单位购买超过100张,两单位共花费27.2万元,求甲、乙两单位各购买门票多少张?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,抛物线 y=ax2 -2ax+4(a<0) 交 x 轴于点 A、B,与 y 轴交于点 C,AB=6.
(1)如图 1,求抛物线的解析式;
(2) 如图 2,点 R 为第一象限的抛物线上一点,分别连接 RB、RC,设△RBC 的面积为 s,点 R 的横坐标为 t,求 s 与 t 的函数关系式;
(3)在(2)的条件下,如图 3,点 D 在 x 轴的负半轴上,点 F 在 y 轴的正半轴上,点 E 为 OB 上一点,点 P 为第一象限内一点,连接 PD、EF,PD 交 OC 于点 G,DG=EF,PD⊥EF,连接 PE,∠PEF=2∠PDE,连接 PB、PC,过点R 作 RT⊥OB 于点 T,交 PC 于点 S,若点 P 在 BT 的垂直平分线上,OB-TS=,求点 R 的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com