精英家教网 > 初中数学 > 题目详情
16.已知3是关于x的方程x2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为(  )
A.7B.10C.11D.10或11

分析 把x=3代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.

解答 解:把x=3代入方程得9-3(m+1)+2m=0,
解得m=6,
则原方程为x2-7x+12=0,
解得x1=3,x2=4,
因为这个方程的两个根恰好是等腰△ABC的两条边长,
①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;
②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.
综上所述,该△ABC的周长为10或11.
故选:D.

点评 本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.一个数的平方是它的相反数,这个数为(  )
A.0或1B.0或-1C.1D.-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:-32+$\sqrt{18}$-(cos30°-1)0-(-$\frac{1}{2}$)-3+82×0.1252

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知二元一次方程2x+y=3
(1)若y的值是负数,求x的取值范围;
(2)已知关于x,y的方程组$\left\{\begin{array}{l}{x-y=a}\\{x+2y=b}\end{array}\right.$的解x,y满足二元一次方程2x+y=3,求a2+2ab+b2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.sin30°+20160=$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)计算:$\frac{a-1}{a}$÷$\frac{{a}^{2}-1}{{a}^{2}+2a}$-1;    
(2)解方程:$\frac{2}{x-1}$=$\frac{4}{{x}^{2}-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知直线y=-$\sqrt{3}$x+3与坐标轴分别交于点A,B,点P在抛物线y=-$\frac{1}{3}$(x-$\sqrt{3}$)2+4上,能使△ABP为等腰三角形的点P的个数有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.小明解方程组$\left\{\begin{array}{l}{3x+y=●}\\{3x-y=15}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=4}\\{y=★}\end{array}\right.$,由于不小心滴了两滴墨水,刚好遮住了两数●和★,请你帮他找回这两个数●=10和★=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若y=$\sqrt{x-3}$+$\sqrt{3-x}$+2,则(y-x)2=1.

查看答案和解析>>

同步练习册答案