精英家教网 > 初中数学 > 题目详情
在四边形ABCD中,对角线AC平分∠DAB.
精英家教网
(1)如图①,当∠DAB=120°,∠B=∠D=90°时,求证:AB+AD=AC.
(2)如图②,当∠DAB=120°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
分析:(1)由AC平分∠DAB,∠DAB=120°,可得∠CAB=∠CAD=60°,又由∠B=∠D=90°,即可得∠ACB=∠ACD=30°,根据直角三角形中30°角所对的直角边等于斜边的一半,即可得AB+AD=AC;
(2)首先过C点分别作AD和AB延长线的垂线段,垂足分别为E、F,由AC平分∠DAB,可得CE=CF,又由∠B与∠D互补,可证得△CED≌△CFB,则可得AD+AB=AE+AF,又由AE+AF=AC,则可得线段AB、AD、AC有怎样的数量关系为AB+AD=AC;
(3)首先过C点分别作AB和AD延长线的垂线段,垂足分别是E、F,与(2)同理可得△CEB≌△CFD,则可得∠G=∠DAC=∠CAB=45°,即可求得线段AB、AD、AC有怎样的数量关系为AB+AD=
2
AC.
解答:证明:(1)在四边形ABCD中,
∵AC平分∠DAB,∠DAB=120°,
∴∠CAB=∠CAD=60°.
又∵∠B=∠D=90°,
∴∠ACB=∠ACD=30°.
∴AB=AD=
1
2
AC,
即AB+AD=AC.

(2)AB+AD=AC.
证明如下:如图②,过C点分别作AD和AB延长线的垂线段,垂足分别为E、F.
∵AC平分∠DAB,
∴CE=CF.
∵∠ABC+∠D=180°,
∠ABC+∠CBF=180°,
∴∠CBF=∠D.
又∵∠CED=∠CFB=90°,
∴△CED≌△CFB.
∴ED=BF.
∴AD+AB=AE+ED+AB=AE+BF+AB=AE+AF.
∵AC为角平分线,∠DAB=120°,
∴∠ECA=∠FCA=30°,
∴AE=AF=
1
2
AC,
∴AE+AF=AC,
∴AB+AD=AE+AF=AC.
∴AB+AD=AC.

(3)AB+AD=
2
AC.
证明如下:如图③,过C点分别作AB和AD延长线的垂线段,垂足分别是E、F.
∵AC平分∠DAB,
∵CE⊥AD,CF⊥AF,
∴CE=CF.精英家教网
∵∠ABC+∠ADC=180°,
∠ADC+∠EDC=180°,
∴∠ABC=∠EDC.
又∵∠CED=∠CFB=90°.
∴△CFB≌△CED(AAS).
∴CB=CD.
延长AB至G,使BG=AD,连接CG.
∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,
∴∠CBG=∠ADC.
∴△GBC≌△ADC(SAS).
∴∠G=∠DAC=∠CAB=45°.
∴∠ACG=90°.
∴AG=
2
AC.
∴AB+AD=
2
AC.
点评:此题考查了全等三角形的判定与性质,四边形的性质,直角三角形的性质等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图所示,在四边形ABCD中,BD是它的一条对角线,若∠1=∠2,∠A=55°16′,则∠ADC=
124°44′

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形ABCD中,AD=4cm,CD=3cm,AD⊥CD,AB=13cm,BC=12cm,求四边形的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

6、在四边形ABCD中,AD∥BC,AB=DC,则四边形ABCD是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在四边形ABCD中,∠A,∠B,∠C,∠D的度数之比为2:3:4:3,则∠C的外角等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是边DC的中点,N是边AB的中点.△MPN是什么三角形?为什么?

查看答案和解析>>

同步练习册答案