精英家教网 > 初中数学 > 题目详情
如图(1),一正方形纸板ABCD的边长为4,对角线AC、BD交于点O,一块等腰直角三角形的三角板的一个顶点处于点O处,两边分别与线段AB、AD交于点E、F,设BE=
(1)若三角板的直角顶点处于点O处,如图(2).判断三角形EOF的形状,并说明理由。

(2)在(1)的条件下,若三角形EOF的面积为S,求S关于x的函数关系式。
(3)若三角板的锐角顶点处于点O处,如图(3).

①若DF=,求关于的函数关系式,并写出自变量的取值范围;
②探究直线EF与正方形ABCD的内切圆的位置关系,并证明你的结论.
(1)△EOF是等腰直角三角形,(2)S=x2-2x+4 (3)EF与正方形ABCD的内切圆相切。

试题分析:解:(1)∵正方形ABCD∴∠AOB=∠EOF=,BO=AO=OD,
∠OAF=∠OBE=∴∠AOF=∠BOE∴△AOF≌△BOE
∴OE=OF  ∴三角形EOF是等腰直角三角形。
(2)由△AOF≌△BOE得BE=AF,AE=FD=



(3)①∵∠EOF=∠0BE= ∴∠FOD+∠EOB=∠BEO+∠EOB=
∴∠FOD=∠BEO,又∠EBO=∠ODF=∴△BOE∽△DFO
 

②连结EF

由①知△BOE∽△DFO
∵BO=DO
而∠EOF=∠0BE=
∴△EOF∽△EBO,∴∠FEO=∠0EB
∴点O到EF、BE的距离相等,而O到BE的距离即为正方形内切
圆⊙O的半径
∴直线EF与正方形的内切圆相切
点评:熟知以上的定义性质,定理。本题应用的知识面很广,对学生要求很高,要认真的体会,把知识点很好的结合在一起,本题难度较大问多,属于偏难题。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

在坐标系中,已知A(﹣3,0),B(0,﹣4),C(0,1),过点C作直线L交x轴于点D,使得以点D,C,O为顶点的三角形与△AOB相似,这样的直线一共可以作出(  )
A.6条B.3条C.4条D.5条

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

,则=(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题背景
(1)如图1,△ABC中,DEBC分别交ABACDE两点,过点EEFABBC于点F.请按图示数据填空:四边形DBFE的面积     ,△EFC的面积     ,△ADE的面积     

探究发现
(2)在(1)中,若DEBC间的距离为.请证明
拓展迁移
(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,EF//BC,,EF=3,则BC的长为
A.6B.9C.12D.27

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知相似△ADE与△ABC的相似比为1:2,则△ADE与△ABC的面积比为(       ).
A.1:2B.1:4C.2:1D.4:1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点A,B分别是两条平行线m,n上任意两点,C是直线n上一点,且∠ABC=90°,点E在AC的延长线上,BC=kAB(k≠0).
(1)当k=1时,在图(1)中,作∠BEF=∠ABC,EF交直线m于点F.写出线段EF与EB的数量关系,并加以证明;

(2)若k≠1,如图(2),∠BEF=∠ABC,其它条件不变,探究线段EF与EB的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,点P在AD上,AB=2,AP=1,将三角板的直角顶点放在点P处,三角板的两直角边分别能与AB、BC边相交于点E、F,连接EF.
(1)如图,当点E与点B重合时,点F恰好与点C重合,求此时PC的长;

(2)将三角板从(1)中的位置开始,绕点P顺时针旋转,当点E与点A重合时停止,在这个过程中,请你观察、探究并解答:

①∠PEF的大小是否发生变化?请说明理由;
②直接写出从开始到停止,线段EF的中点所经过的路线长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AD、CE均是△ABC的高,交于H.若EB=EH=3,AE=4,则CH的长为             .

查看答案和解析>>

同步练习册答案