【题目】如图,在Rt△ABC中,∠C=90°,AC=4,cosA=,点D是斜边AB上的动点且不与A,B重合,连接CD,点B'与点B关于直线CD对称,连接B'D,当B'D垂直于Rt△ABC的直角边时,BD的长为______.
【答案】1或3.
【解析】
由cosA=,AC=4,得AB=5,从而得BC=3,分两种情况:①如图1中,当B′D⊥BC时,②如图2中,当DB′⊥AC于E时,分别求出BD的值,即可.
∵cosA==,AC=4,
∴AB=5,
∴BC===3,
①如图1中,当B′D⊥BC时,设B′D交BC于E,
∵点B'与点B关于直线CD对称,
∴∠ADC=∠BDM=∠B′DM=∠CDE,
∵∠ACB=∠B′EB=90°,
∴AC∥B′E,
∴∠ACD=∠CDE=∠ADC,
∴AD=AC=4,
∴BD=AB-AD=5-4=1;
②如图2,当DB′⊥AC于E时,同理可得:BC=BD=3,
综上所述,满足条件的BD的值为1或3.
故答案是:1或3.
科目:初中数学 来源: 题型:
【题目】如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:
①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.
其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC绕原点逆时针旋转90°,得到△A1B1C1,将△A1B1C1向右平移6个单位,再向上平移2个单位得到△A2B2C2.
(1)画出△A1B1C1和△A2B2C2;
(2)△ABC经旋转、平移后点A的对应点分别为A1、A2,请写出点A1、A2的坐标;
(3)P(a,b)是△ABC的边AC上一点,△ABC经旋转、平移后点P的对应点分别为P1,P2,请写出点P1、P2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的是( ).
A. “打开电视机,正在播放《动物世界》”是必然事件
B. 某种彩票的中奖概率为,说明每买1000张,一定有一张中奖
C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为
D. 想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”
(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.
(2)如图1,在△ABC中,AB=2,BC=,AC=3,D为平面内一点,以A、B、C、D四点为顶点构成的四边形为“完美四边形”,若DA,DC的长是关于x的一元二次方程x2-(m+3)x+(5m2-2m+13)=0(其中m为常数)的两个根,求线段BD的长度.
(3)如图2,在“完美四边形”EFGH中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是△ACD的外接圆⊙O的直径,CD交AB于点F,其中AC=AD,AD的延长线交过点B的切线BM于点E.
(1)求证:CD∥BM;
(2)连接OE交CD于点G,若DE=2,AB=4,求OG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一面墙(墙的长度为15 m),用篱笆围成一个矩形花园ABCD,中间再用一道篱笆隔成两个小矩形,共用去篱笆42 m.设平行于墙的一边BC长为x m,花园的面积为S m2.
(1)求S与x之间的函数解析式;
(2)问花园面积可以达到120平方米吗?如果能,花园的长和宽各是多少?如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a<0)经过点A(-1,0)、B(4,0)与y轴交于点C,tan∠ABC=.
(1)求抛物线的解析式;
(2)点M在第一象限的抛物线上,ME平行y轴交直线BC于点E,连接AC、CE,当ME取值最大值时,求△ACE的面积.
(3)在y轴负半轴上取点D(0,-1),连接BD,在抛物线上是否存在点N,使∠BAN=∠ACO-∠OBD?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com