精英家教网 > 初中数学 > 题目详情
16.如图,抛物线L:y=-$\frac{1}{2}$(x-t)(x-t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=$\frac{k}{x}$(k>0,x>0)于点P,且OA•MP=12.
(1)求k的值;
(2)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;
(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标.

分析 (1)设P(x,y),则可表示出MP,由M为OA的中点,可求得OA,由条件可求得xy,则可求得k的值;
(2)把t=1,代入抛物线解析式,令y=0可求得A、B两点的坐标,可求得AB的长,再求得抛物线的对称轴和直线MP的方程,可求得直线MP与对称轴之间的距离;
(3)可用t表示出A、B两点的坐标,进一步可表示出直线MP的解析式,再根据顶点的位置可求得其最大值,可表示出G的坐标.

解答 解:
(1)设P(x,y)则MP=y,
∵M为OA的中点,
∴OA=2x,
∵OA•MP=12,
∴2xy=12,
∴xy=6,
∴k=6;
(2)当t=1,y=0时,0=-$\frac{1}{2}$(x-1)(x-1+4),解得x=1或x=-3,
∴A(1,0)、B(-3,0),
∴AB=4;
∴抛物线L的对称轴为直线x=$\frac{1+(-3)}{2}$=-1,
∵OA=1,
∴MP为直线x=$\frac{1}{2}$,
∴直线MP与L对称轴之间的距离为$\frac{3}{2}$;
(3)在y=-$\frac{1}{2}$(x-t)(x-t+4)中,令y=0可得-$\frac{1}{2}$(x-t)(x-t+4)=0,解得x=t或x=t-4,
∴A(t,0),B(t-4,0),
∴抛物线L的对称轴为直线x=$\frac{t+t-4}{2}$=t-2,
又∵MP为直线x=$\frac{t}{2}$,
∴当抛物线L的顶点在直线MP上或左侧时,即t-2≤$\frac{t}{2}$时,解得t≤4,此时,顶点(t-2,2)为图象G最高点的坐标;
当抛物线L的顶点在直线MP右侧时,即t-2>$\frac{t}{2}$时,解得t>4,此时时,交点直线MP与抛物线L的交点为($\frac{t}{2}$,-$\frac{1}{8}$t2+t),为图象G最高点的坐标.

点评 本题为二次函数和反比例函数的综合应用,涉及二次函数的性质、一元二次方程、分类讨论思想和方程思想等知识.在(1)中注意方程思想的应用,在(2)中求得A、B的坐标是解题的关键,在(3)中注意分两种情况.本题考查知识点较多,综合性较强,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.已知,如图所示,在平面直角坐标系中,Rt△OAB的直角顶点A在反比例函数y=$\frac{4\sqrt{3}}{x}$(x>0)图象上,∠AOB=30°,顶点B在x轴上,求此△OAB顶点A的坐标和△OAB面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在△ABC中,∠ACB=90°,经过点B的直线l(不与直线AB重合)与直线BC的夹角∠DBC=∠ABC,分别过点C、A作直线l的垂线,垂足分别为点D、E.
(1)问题发现
①若∠ABC=30°,如图①,则$\frac{CD}{AE}$=$\frac{1}{2}$;②若∠ABC=45°,如图②,则$\frac{CD}{AE}$=$\frac{1}{2}$.
(2)拓展探究
当0°<∠ABC∠90°,$\frac{CD}{AE}$的值由有无变化?请仅就图③的情形给出证明.
(3)问题解决
随着△ABC的位置旋转,若直线CE、AB交于点F,且$\frac{CF}{EF}$=$\frac{5}{6}$,CD=4,请直接写出线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)2+50÷22×(-$\frac{1}{5}$)-1
(2)(-2.5)×8×(-4)×(-0.125)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示,把纸片△A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.
(1)写出图中一对全等的三角形,并写出它们的所有对应角.
(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的式子表式)
(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,直线l1:y1=-x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=$\frac{1}{2}$x+b过点P,与x轴交于点C.
(1)直接写出m和b的值及点A、点C的坐标;
(2)若动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.
①当点Q在运动过程中,请直接写出△APQ的面积S与t的函数关系式;
②求出当t为多少时,△APQ的面积等于3;
③是否存在t的值,使△APQ为等腰三角形?若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.
(1)求证:AD∥CG;
(2)求证:△ACF≌△CBG;
(3)若CF=12,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.
(1)求点E的坐标;
(2)求折痕CD所在直线的函数表达式;
(3)请你延长直线CD交x轴于点F.
①求△COF的面积;
②在x轴上是否存在点P,使S△OCP=$\frac{1}{3}$S△COF?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,四边形ABCD为⊙O的内接四边形,若四边形ABCO为平行四边形,则∠ADB=30°.

查看答案和解析>>

同步练习册答案