精英家教网 > 初中数学 > 题目详情

 在平面直角坐标系xOy中,已知抛物线的对称轴是,并且经过点(-2,-5).

(1)求此抛物线的解析式;

(2)设此抛物线与x轴交于AB两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点BC重合), 若以BOD为顶点的三角形与△BAC相似,求点D的坐标;

(3)点Py轴上,点M在此抛物线上,若要使以点PMAB为顶点的四边形是平行四边形,请你直接写出点M的坐标.

 

 

(1)抛物线的解析式为y =-x2+2x+3. …

(2)点的坐标为

(3)点M的坐标为

解析:

解:(1)由题意,得…………… 2分

解这个方程组,得  ……………………………… 3分

∴ 抛物线的解析式为y =-x2+2x+3. ……………………………4分

(2)令,得.

解这个方程,得. .…………… 5分

,得

过点轴于点

要使

已有,则只需成立.……… 7分

①若成立,

则有

中,由勾股定理,得

的坐标为.   ……………………………………………9分

成立,则有

②在中,由勾股定理,得

的坐标为.     ……………………………………………11分

的坐标为

(3)点M的坐标为.  ……………………14分

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案