精英家教网 > 初中数学 > 题目详情
19.如图,△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上-点.
(1)求证:△ACD≌△BCE;
(2)判断BD与BE的位置关系,并证明.

分析 (1)根据等腰直角三角形性质求出AC=BC,EC=DC,再证明∠ACD=∠BCE=90°-∠CDB,根据全等三角形的判定推出即可;
(2)由等腰直角三角形的性质得出∠BAC=∠ABC=45°,由全等三角形的性质得出∠CBE=∠BAC=45°,得出∠DBE=90°即可.

解答 (1)证明:∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,
∴AC=BC,EC=DC,
∴∠ACD=∠BCE=90°-∠CDB,
在△ACD和△BCE中,$\left\{\begin{array}{l}{AC=BC}&{\;}\\{∠ACD=∠BCE}&{\;}\\{CD=CE}&{\;}\end{array}\right.$,
∴△ACD≌△BCE(SAS)
(2)解:BD⊥BE;理由如下:
∵,△ACB是等腰直角三角形,∠ACB=90°,
∴∠BAC=∠ABC=45°,
由(1)得:△ACD≌△BCE,
∴∠CBE=∠BAC=45°,
∴∠DBE=45°+45°=90°,
∴BD⊥BE.

点评 本题考查了等腰直角三角形的性质,全等三角形的性质和判定,解此题的关键是推出△ACD≌△BCE和求出∠DBE=90°,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.-2的相反数是(  )
A.-2B.2C.0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解不等式组,并把它的解集在数轴上表示出来:
(1)$\left\{\begin{array}{l}{-3x-1>3}\\{2x+1>3}\end{array}\right.$
(2)$\left\{\begin{array}{l}{3(x-2)+8>2x}\\{\frac{x+1}{3}≤x-\frac{x-1}{2}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知在矩形ABCD中,AB=4,AD=7,点G、F、H、E是分别边AB、BC、DC、AD上的点,分别沿HE,GF折叠矩形恰好使DE、BF都与EF重合,则AE=(  )
A.1或$\frac{8}{3}$B.2或$\frac{8}{3}$C.$\frac{3}{2}$或$\frac{8}{3}$D.$\frac{5}{2}$或$\frac{8}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,直线y=$\frac{1}{2}$x+3与y轴交于点A、与x轴交于点C,直线l1与y轴交于点A,与x轴交于点B,且两直线互相垂直.
(1)点A的坐标为(0,3),点B的坐标为($\frac{3}{2}$,0),点C的坐标为(-6,0).
(2)已知双曲线y=-$\frac{k}{x}$与l1交点坐标为(-1,k),求k的值;
(3)请利用图象直接写出不等式-$\frac{k}{x}$>$\frac{1}{2}$x+3的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,在平面直角坐标系中有一个Rt△OAC,其中∠ACO=90°,∠CAO=30°,OC=3,将该三角形沿直线AC翻折得到△BAC.
(1)点A的坐标为(3,3$\sqrt{3}$),点B的坐标为(6,0),OA边所在直线的解析式为y=$\sqrt{3}$x;
(2)在图1中,一动点P从点O出发,沿折线O→A→B的方向以每秒2个单位的速度向B运动,设运动时间为t(秒).请求出当t为何值时,△ACP的面积为△AOB面积的$\frac{1}{3}$;
(3)如图2,固定△OAC,将△BAC绕点C逆时针旋转,旋转后得到△A′CB′,设A′C所在直线与OA所在直线的交点为E,请问在旋转过程中是否存在点E,使△ACE为等腰三角形?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某校七年级举办数学竞赛,有120人参加,竞赛平均分66分,及格学生的平均分为76分,不及格学生的平均分为52分.求这次竞赛中及格的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知m是方程x2=x+1的一个根,则关于x的方程x2+2xm2-2xm-1=0有一个根是(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.-1+$\sqrt{2}$D.1-$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.请你任意写出一个经过(0,3)点,且y随x的增大而减小的一次函数的解析式y=-x+3(答案不唯一).(写出一种即可)

查看答案和解析>>

同步练习册答案