精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在直角△ABC中,AD=DE=EB,且CD2+CE2=1,则斜边AB的长为
 
分析:作EM⊥BC,DN⊥BC,设AB=3x则BE=DE=AD=x;设BC=3y,则BM=MN=NC=y,2ME=ND,利用勾股定理分别列出:ME2+MC2=EC2,ND2+NC2=CD2,然后将两式相加,求得BE的长即可求得AB的长.
解答:精英家教网解:作EM⊥BC,DN⊥BC.
∵∠C=90°,
∴∠BME=∠BND=90°,
设AB=3x,则BE=DE=AD=x
设BC=3y,则BM=MN=NC=y,2ME=ND,
在Rt△CME中,ME2+MC2=EC2.(1)
在Rt△CND中,ND2+NC2=CD2.(2)
(1)+(2)得:5ME2+5y2=1,ME2+y2=
1
5

在Rt△BME中:BE2=BM2+ME2,即:x2=y2+ME2=
1
5

∴AB=3BE=
3
5
5

故答案为:
3
5
5
点评:此题主要考查学生对勾股定理知识点的理解和掌握,解答此题的关键是设AB=3x,则BE=DE=AD=x;设BC=3y,则BM=MN=NC=y,2ME=ND,此题难度较大,属于难题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点精英家教网P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在直角坐标系中,矩形OABC的对角线AC所在直线解析式为y=-
3
3
x+1.
(1)在x轴上存在这样的点M,使AMB为等腰三角形,求出所有符合要求的点M的坐标;
(2)动点P从点C开始在线段CO上以每秒
3
个单位长度的速度向点O移动,同时,动点Q从点O精英家教网开始在线段OA上以每秒1个单位长度的速度向点A移动.设P、Q移动的时间为t秒.
①是否存在这样的时刻2,使△OPQ与△BCP相似,并说明理由;
②设△BPQ的面积为S,求S与t间的函数关系式,并求出t为何值时,S有最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在直角坐标系中,⊙O1经过坐标原点,分别与x轴正半轴、y轴正半轴交于点A、B.
(1)若点O到直线AB的距离为
12
5
,且tan∠B=
3
4
,求线段AB的长;
(2)若点O到直线AB的距离为
12
5
,过点A的切线与y轴交于点C,过点O的切线交AC于点D,过点B的切线交OD于点E,求
1
CD
+
1
BE
的值;
(3)如图,若⊙O1经过点M(2,2),设△BOA的内切圆的直径为精英家教网d,试判断d+AB的值是否会发生变化,若不变,求出其值;若变化,求其变化的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在直角梯形ABCD中,AD∥BC,∠A=90°,BC=CD,BE⊥DC于点E.求证:AD=ED.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,CD=8,BC=12,∠ACB=30°,E为BC边上一点,以BE为边作正三角形BEF,使正三角形BEF和梯形ABCD在BC的同侧.
(l)当正三角形BEF的顶点F恰好落在对角线AC上时,求BE的长;
(2)将(1)问中的正三角形BEF沿BC向右平移,记平移中的正三角形BEF为正三角形B′E′F′,当点E与点C重合时停止平移.设平移的距离为x,正三角形B′E′F′的边B′E′和E′F′分别与AC交于点M和点N,连接,DM,DN:
①设正三角形B′E′F′与△ABC重叠部分的面积为S,求S与x之间的函数关系式,并写出自变量x的取值范围,求当DN取得最小值时,求出S的值;
②是否存在这样的x,使三角形DMN是直角三角形?若存在,求出x的值;若不存在,请说明理由. 

查看答案和解析>>

同步练习册答案