精英家教网 > 初中数学 > 题目详情

【题目】在一条东西走向河的一侧有一村庄C,河边原有两个取水点AB,其中ABAC,由于某种原因,由CA的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点HAHB在一条直线上),并新修一条路CH,测得CB3千米,CH2.4千米,HB1.8千米.

1)问CH是否为从村庄C到河边的最近路?(即问:CHAB是否垂直?)请通过计算加以说明;

2)求原来的路线AC的长.

【答案】1CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.

【解析】

1)根据勾股定理的逆定理解答即可;

2)根据勾股定理解答即可

1)是,

理由是:在CHB中,

CH2+BH2=(2.42+1.829

BC29

CH2+BH2BC2

CHAB

所以CH是从村庄C到河边的最近路

2)设ACx

RtACH中,由已知得ACxAHx1.8CH2.4

由勾股定理得:AC2AH2+CH2

x2=(x1.82+2.42

解这个方程,得x2.5

答:原来的路线AC的长为2.5千米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x,
(1)求AD的长;
(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;
(3)直接写出:当△CDP为等腰三角形时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】abc是正数,下列各式,从左到右的变形不能用如图验证的是(  )

A. b+c2b2+2bc+c2

B. ab+c)=ab+ac

C. a+b+c2a2+b2+c2+2ab+2bc+2ac

D. a2+2abaa+2b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段AC,点D为AC的中点,B是直线AC上的一点,且 BC=AB,BD=1cm,则线段AC的长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019年元旦期间,某超市打出促销广告,如下表所示:

一次性所购物品的原价

优惠办法

不超过200

没有优惠

超过200元,但不超过600

全部按九折优惠

超过600

其中600元仍按九折优惠,超过600元部分按8折优惠

1)小张一次性购买物品的原价为400元,则实际付款为 元;

2)小王购物时一次性付款580元,则所购物品的原价是多少元?

3)小赵和小李分别前往该超市购物,两人各自所购物品的原价之和为1200元,且小李所购物品的原价高于小赵,两人实际付款共1074元,则小赵和小李各自所购物品的原价分别是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分表表示甲、乙两人与A地的距离与他们所行时间之间的函数关系,且OPEF相交于点M

求线段OP对应的x的函数关系式;

x的函数关系式以及AB两地之间的距离;

求经过多少小时,甲、乙两人相距3km

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CDABOE平分∠AODOFOEOGCD,∠CDO50°,则下列结论:

AOE65°;② OF平分∠BOD;③ GOE=∠DOF;④ AOE=∠GOD,其中正确结论的个数是(

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2-2ax+a+4(a<0)经过点B.

(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.
①写出点M′的坐标;
②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设⊙B, ⊙M′都与直线l′相切,半径分别为R1、R2 , 当R1+R2最大时,求直线l′旋转的角度(即∠BAC的度数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题,如图,正方形ABCD。
(1)请在图①中作两条直线,使它们将正方形ABCD的面积三等分;

(2)如图②,在矩形ABCD中,AB=6,BC=9,在图②中过顶点A作两条直线,使它们将矩形ABCD的面积三等分,井说明理由;

(3)如图③,农博园有一块不规则的五边形ABCDE空地,其中AB∥CD、AE∥BC,AB=AC=100米,AE=160米,BC=120米,CD=62.5米,根据视觉效果和花期特点,农博园设计部门想在这片空地种上等面积的三种不同的花,要求从入口A点处修两条笔直的小路(小路的面积忽略不计)方便游客赏花,两条小路将这块地面积三等分.请通过计算画图说明其设计部们能否实现,若能实现请确定小路尽头的位置.

查看答案和解析>>

同步练习册答案