【题目】上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招﹣﹣“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准.
流量阶梯定价标准 | |
使用范围 | 阶梯单价(元/MB) |
1﹣100MB | a |
101﹣500MB | 0.07 |
501﹣20GB | b |
语音阶梯定价标准 | |
使用范围 | 阶梯资费(元/分钟) |
1﹣500分钟 | 0.15 |
501﹣1000分钟 | 0.12 |
1001﹣2000分钟 | m |
【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×(600﹣500)=87元】
(1)甲定制了600MB的月流量,花费48元;乙定制了2GB的月流量,花费120.4元,求a,b的值.(注:1GB=1024MB)
(2)甲的套餐费用为199元,其中含600MB的月流量;丙的套餐费用为244.2元,其中包含1GB的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m的值.
【答案】
(1)解:依题意得: ,
解得: .
∴a的值为0.15元/MB,b的值为0.05元/MB
(2)解:设甲的套餐中定制x(x>1000)分钟的每月通话时间,则丙的套餐中定制(x+300)分钟的每月通话时间,
丙定制了1GB的月流量,需花费100×0.15+(500﹣100)×0.07+(1024﹣500)×0.05=69.2(元),
依题意得: ,
解得:m=0.08.
答:m的值为0.08元/分钟
【解析】(1)由600M和2G均超过500M,分段表示出600M和2G的费用,由此可得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)设甲的套餐中定制x(x>1000)分钟的每月通话时间,则丙的套餐中定制(x+300)分钟的每月通话时间,先求出丙定制1G流量的费用,再根据“套餐费用=流量费+语音通话费”即可列出关于m、x的二元一次方程组,解方程组即可得出m的值.本题考查了二元一次方程组的应用,解题的关键是:(1)根据数量关系列出关于a、b的二元一次方程组;(2)根据数量关系列出关于x、m的二元一次方程组.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.
科目:初中数学 来源: 题型:
【题目】如图是A,B,C三个岛的平面图,C岛在A岛的北偏东32°方向,B岛在A岛的北偏东66°方向,C岛在B岛的北偏西44°方向.求C岛看A、B两岛的视角∠ACB的度数?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】长春外国语学校为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元.已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE= ,S△BDE= ,则AC= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.抛物线y= x2+bx+c经过点C,且对称轴为x=﹣ ,并与y轴交于点G.
(1)求抛物线的解析式及点G的坐标;
(2)将Rt△ABC沿x轴向右平移m个单位,使B点移到点E,然后将三角形绕点E顺时针旋转α°得到△DEF.若点F恰好落在抛物线上.
①求m的值;
②连接CG交x轴于点H,连接FG,过B作BP∥FG,交CG于点P,求证:PH=GH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(操作发现)
(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
①求∠EAF的度数;
②DE与EF相等吗?请说明理由;
(类比探究)
(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.
①∠EAF= ;
②当AE=1,ED=2时,求DB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)问t为何值时,PA=PB?
(2)问t为何值时,△BCP为等腰三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com