精英家教网 > 初中数学 > 题目详情
如图,以BC为直径的圆0交∆CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2 =AF.AC.
小题1:求△ANM?△ENM;
小题2:求证:FB是圆O的切线
小题3:证明四边形AMEN是菱形.

小题1:证明:因为BC是圆0的直径,
所以:∠BAC=900                                   (1分)
又EM⊥BC,BM平分∠ABC,
所以:AM="ME." ∠AMN=∠EMN
又MN=MN
所以:∆ANM?∆ENM
小题2:因为:AB2=AF?AC,

又∠ABF=∠C
所以:∆ABF~∆ACB                                                 (4分)
所以:∠ABF=∠C
又∠FBC="∠ABC+∠FBA=" 900
.’.FB是圆O的切线
小题3:解:由(1)得AN="EN,AM=EM," ∠AMN=∠EMN
又:AN//ME
所以:∠ANM=∠EMN                                              (7分)
所以:∠AMN=∠ANM                                        (8分)
所以:AN=AM
AM=ME+EN=AN
所以:四边形AMEN是菱形                                   (10分)
(1)利用角平分线的性质定理,可以得出AM=ME,∠AMN=∠EMN,再利用SAS可证出:△ANM≌△ENM
(2)利用相似三角形的判定可证出△ABF∽△ACB,从而得出∠ABF=∠C,那么可以得到∠CBF=90°
(3)利用(1)中的结论先证出∠AMN=∠ANM,可以得到AM=ME=EN=AN,从而得出四边形AMEN是菱形,再求出△BND∽△BME,利用比例线段可求出ME的长,再利用菱形的面积公式可计算出菱形的面积.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,已知⊙O是正方形ABCD的外接圆,点E是⊙O上任意一点,则∠BEC的度数为 (   )
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线y= 与x轴、y轴分别相交于A、B两点,圆心P的坐标为(1,0),⊙P与y轴相切于点O,若将⊙P沿x轴向左平平移,当⊙P向左平移      个单位长度时,⊙P与该直线相切.   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图点P为弦AB上一点,连结OP,过P作,PC交⊙O于点C,若AP=4,PB=2,则PC的长为__◆  

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A,O之间的距离为d。

小题1:如图1,当r<a时,根据d与a,r之间关系,请你将⊙O与正方形的公共点个数填入下表:
d,a,r之间的关系
公共点的个数
d>a+r
0
d=a+r
 
a-r<d<a+r
 
d=a-r
 
d<a-r
 
 
小题2:如图2,当r=a时,根据d与a,r之间关系,请你写出⊙O与正方形的公共点个数,即当r=a时,⊙O与正方形的公共点个数可能有         个。

小题3:如图3,当⊙O与正方形的公共点个数有5个时,r=      (请用a的代数式表示r,不必说明理由)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

点D是⊙O的直径CA延长线上一点,点B在⊙O上,∠DBA=∠C.
小题1:请判断BD所在的直线与⊙O的位置关系,并说明理由;
小题2:若AD=AO=1,求图中阴影部分的面积(结果保留根号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙O的直径AB与弦CD相交于E,弧BC=弧BD,CD∥BF,BF交AD的延长线于F。

小题1:求证:.BF是⊙O的切线
小题2:连结BC,若⊙O的半径为4,cos∠BCD=,求线段AD、CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O是△ABC的外接圆,∠A=50°,则∠OBC的度数等于(*)
A.50°B.40°C.45°D.100°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为( ▲ ) 
A.B.C.D.

查看答案和解析>>

同步练习册答案