精英家教网 > 初中数学 > 题目详情

如图,A、B为⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合),我们称∠APB为⊙O上关于A、B的滑动角。
(1)已知∠APB是上关于点A、B的滑动角。
① 若AB为⊙O的直径,则∠APB=      
② 若⊙O半径为1,AB=,求∠APB的度数

(2)已知外一点,以为圆心作一个圆与相交于A、B两点,∠APB为上关于点A、B的滑动角,直线PA、PB分别交于点M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系。

解:(1)①900

②如图,连接AB、OA、OB.

在△AOB中,∵OA=OB=1.AB=,∴OA2+OB2=AB2
∴∠AOB=90°。
当点P在优弧 AB 上时(如图1),∠APB=∠AOB=45°;
当点P在劣弧 AB 上时(如图2),
∠APB=(360°-∠AOB)=135°。
(2)根据点P在⊙O1上的位置分为以下四种情况.
第一种情况:点P在⊙O2外,且点A在点P与点M之间,点B在点P与点N之间,如图3,

∵∠MAN=∠APB+∠ANB,
∴∠APB=∠MAN-∠ANB。
第二种情况:点P在⊙O2外,且点A在点P与点M之间,点N在点P与点B之间,如图4,

∵∠MAN=∠APB+∠ANP=∠APB+(180°-∠ANB),
∴∠APB=∠MAN+∠ANB-180°。
第三种情况:点P在⊙O2外,且点M在点P与点A之间,点B在点P与点N之间,如图5,

∵∠APB+∠ANB+∠MAN=180°,
∴∠APB=180°-∠MAN-∠ANB。
第四种情况:点P在⊙O2内,如图6,

∠APB=∠MAN+∠ANB。

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,E、F为AD上两点,且AF=DE,AB=DC,BE=CF.
求证:(1)△ABE≌△DCF;
(2)BF=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC中D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E为垂足,连接AE.
求证:(1)ED=DA;
(2)∠EBA=∠EAB
(3)BE2=AD•AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y轴与G,连OB、OC.
(1)判断△AOG的形状,并予以证明;
(2)若点B、C关于y轴对称,求证:AO⊥BO;
(3)在(2)的条件下,如图2,点M为OA上一点,且∠ACM=45°,BM交y轴于P,若点B的坐标为(3,1),求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,D、C为AF上两点,AD=CF,AB=DE,要使得△ABC≌△DEF,需补充边的条件为
BC=EF
BC=EF

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,D(0,-3),M(4,-3),直角三角形ABC的边与x轴分别交于O、G两点,与直线DM分别交于E、F点.
(1)将直角三角形ABC如图1位置摆放,请写出∠CEF与∠AOG之间的等量关系:
∠CEF=90°+∠AOG
∠CEF=90°+∠AOG

(2)将直角三角形ABC如图2位置摆放,N为AC上一点,∠NED+∠CEF=180°,请写出∠NEF与∠AOG之间的等量关系,并说明理由.

查看答案和解析>>

同步练习册答案