【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.当△PAC为直角三角形时点P的坐标 .
【答案】(3,5)或(,).
【解析】
试题分析:由于P点不可能为直角顶点,因此就只有两种情况:若A为直角顶点,过A作AB的垂线与抛物线的交点即为C点,过C作y轴的平行线与AB的交点即为P点;若C为直角顶点,过A作x轴的平行线与抛物线的另一个交点即为C点,过C作y轴的平行线与AB的交点即为P点.
解:∵直线y=x+2过点B(4,m),
∴m=6,
∴B(4,6).
将A、B两点坐标代入抛物线解析式得:,
解得:
∴抛物线的解析式为:y=2x2﹣8x+6.
①若A为直角顶点,如图1,
设AC的解析式为:y=﹣x+b,
将A点代入y=﹣x+b得b=3
∴AC的解析式为y=﹣x+3,
由,解得:或(舍去)
令P点的横坐标为3,则纵坐标为5,
∴P(3,5);
②若C为直角顶点,如图2,
令,解得:x=或x=(舍去),
令P点的横坐标为,则纵坐标为,
∴P(,);
故答案为:(3,5)或(,).
科目:初中数学 来源: 题型:
【题目】阅读下面解答过程,填空或填理由.
已知如图,点E,F分别是AB和CD上的点,DE,AF分别交BC于点G,H,∠A=∠D,∠1=∠2.试说明:∠B=∠C.
解:∵∠1=∠2 ( ),
∠2=∠3 ( ),
∴∠3=∠1 ( ).
∴AF∥DE ( ).
∴∠4=∠D ( ).
又∵∠A=∠D ( ),
∴∠A=∠4 ( ).
∴AB∥CD ( ).
∴∠B=∠C ( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的是( )
A. 有一个角为直角的四边形是菱形
B. 对角线互相垂直的菱形是正方形
C. 对角线相等的平行四边形是矩形
D. 一组邻边相等的平行四边形是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是( )
A. 96 B. 69 C. 66 D. 99
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com