A. | 20° | B. | 50° | C. | 30° | D. | 40° |
分析 根据AD=AE,BD=EC,∠ADB=∠AEC=110°,可知△ADB≌△AEC,可得出AB=AC,根据等腰三角形的性质即可解答.
解答 解:∵∠ADB=∠AEC=100°,
∴∠ADE=∠AED=80°,
∴AD=AE,
∵∠BAD=50°,
∴∠B=180°-100°-50°=30°,
在△ADB与△AEC中,
$\left\{\begin{array}{l}{AD=AE}\\{∠ADB=∠AEC}\\{BD=EC}\end{array}\right.$,
∴△ADB≌△AEC(SAS),
∴AB=AC,
∴∠B=∠C=30°,
故选C.
点评 本题考查了等腰三角形的性质,属于基础题,关键是先求出AB=AC,再根据等腰三角形等边对等角的关系即可.
科目:初中数学 来源: 题型:选择题
A. | 2$\sqrt{3}$ | B. | 4 | C. | 8 | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2.5 | B. | 3 | C. | $\sqrt{5}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 58° | B. | 42° | C. | 32° | D. | 28° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (1,-2) | B. | (1,-$\sqrt{2}$) | C. | (1,-$\sqrt{3}$) | D. | (-1,-$\sqrt{3}$) |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com