精英家教网 > 初中数学 > 题目详情

【题目】如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B 在直线n上运动,ACBC分别是∠BAO和∠ABO的角平分线.

1)求∠ACB的大小;

2)如图2,若BDAOB的外角∠OBE的角平分线,BDAC相交于点D,点AB在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;

3)如图3,过C作直线与AB交于F,且满足∠AGO-∠BCF=45°,求证:CFOB

【答案】(1)135°;(2)45°;(3)证明见解析.

【解析】

1)根据角平分线的性质得到∠OAC =CAB,∠ABC=∠GBC,根据三角形的内角和得到∠OAB+ABO90°,即可求出∠CAB+ABC的度数,根据三角形的内角和即可求解.

2)根据角平分线的性质得到∠GBD=EBD则∠CBD=GBC+GBD=(∠ABG+GBE=90°,根据∠ACB=135°即可求出∠ADB的大小.

3)根据三角形外角的性质得到∠AGO=GCB+GBC=45°+GBC,∠AGOBCF=45°,可得到∠GBC=BCF,即可证明.

1)∵ACBC分别是∠BAO和∠ABO角的平分线,

∴∠OAC =CAB,∠ABC=∠GBC

mn

∴∠AOB90°

∴∠ACB=180°-(∠CAB+ABC

=180°(∠OAB+ABO=180°×90° =135°.

2)∵BD是∠OBE角的平分线,∴∠GBD=EBD

∴∠CBD=GBC+GBD=(∠ABG+GBE=90°

又∵∠ACB=135°,∴∠DCB=45°

∴∠ADB=180°-∠CBD -∠DCB=45°

AB在运动的过程中,∠ADB不发生变化,其值为45°.

3)∵∠AGO=GCB+GBC=45°+GBC

又已知:∠AGOBCF=45°

45°+GBCBCF=45°

GBC=BCF,∴CFOB.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么下列说法不正确的是(  )

A. MNBCB. MNAMC. ANBCD. BMCN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0, ),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.

(1)求该抛物线的函数解析式;
(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习了正方形之后,给同桌小文出了道题.从下列四个条件:①ABBC;②∠ABC90°;③ACBD;④ACBD中选出两个作为补充条件,使平行四边形ABCD成为正方形(如图所示).现有下列四种选法,你认为其中错误的是( )

A. ①②B. ②④C. ①③D. ②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.

(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王晓同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.

已知:如图,在平行四边形ABCD中,

求证:平行四边形ABCD

(1)在方框中填空,以补全已知和求证;

(2)按王晓的想法写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家推行“节能减排,低碳经济”政策后,某环保节能设备生产的产品供不应求,若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于44万元,每套产品的售价不低于80万元.已知这种设备的月产量x(套)与每套的售价y1(万元)间满足关系式y1=160﹣2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.

(1)直接写出y2与x之间的函数关系式;
(2)求月产量x的范围;
(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知n边形的内角和θ=n-2×180°.

1甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;

2n边形变为n+x边形,发现内角和增加了360°,用列方程的方法确定x.

查看答案和解析>>

同步练习册答案