精英家教网 > 初中数学 > 题目详情
我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为( )
A.0
B.1
C.-1
D.i
【答案】分析:i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,i5=i4•i=i,i6=i5•i=-1,从而可得4次一循环,一个循环内的和为0,计算即可.
解答:解:由题意得,i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,i5=i4•i=i,i6=i5•i=-1,
故可发现4次一循环,一个循环内的和为0,
=503…1,
∴i+i2+i3+i4+…+i2012+i2013=i.
故选D.
点评:本题考查了实数的运算,解答本题的关键是计算出前面几个数的值,发现规律,求出一个循环内的和再计算,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们知道,一元二次方程主要有四种解法,分别是:因式分解法、直接开平方法、配方法和公式法.请在以下四个方程中任选一个,并用合适的方法解方程.
①2x2-7x+5=0  ②3x2-12x=0  ③2(x-6)2=72  ④x2-4x=5
请用合适的方法解这个方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•永州)我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为(  )

查看答案和解析>>

科目:初中数学 来源:2013-2014学年江苏省扬州市邗江区九年级上学期期末考试数学试卷(解析版) 题型:填空题

我们知道,一元二次方程没有实数根,即不存在一个实数的平方等于.若我们规定一个新数“”,使其满足(即方程有一个根为).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有,从而对于任意正整数,我们可以得到,同理可得,,.那么的值为         .

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(湖南永州卷)数学(解析版) 题型:选择题

我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i22=(﹣1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为【    】

A.0       B.1       C.﹣1      D.i

 

查看答案和解析>>

科目:初中数学 来源:永州 题型:单选题

我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为(  )
A.0B.1C.-1D.i

查看答案和解析>>

同步练习册答案