精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点A1A2A3B1B2B3分别在直线x轴上.OA1 B1,△B1 A2 B2,△B2 A3 B3都是等腰直角三角形.如果点A1(11),那么点A2019的纵坐标是( )

A. B. C. D.

【答案】B

【解析】

因为每个A点为等腰直角三角形的直角顶点,则每个点A的纵坐标为对应等腰直角三角形的斜边一半.故先设出各点A的纵坐标,可以表示A的横坐标,代入解析式可求点A的纵坐标,规律可求.

分别过点A1A2A3x轴作垂线,垂足为C1C2C3

∵点A111)在直线y=x+b
∴代入求得:b=

y=

∵△OA1B1为等腰直角三角形
OB1=2
设点A2坐标为(ab
∵△B1A2B2为等腰直角三角形
A2C2=B1C2=b
a=OC2=OB1+B1C2=2+b
A22+bb)代入y=

解得b=

OB2=5
同理设点A3坐标为(ab
∵△B2A3B3为等腰直角三角形
A3C3=B2C3=b
a=OC3=OB2+B2C3=5+b
A35+bb)代入y=

解得b=

以此类推,发现每个A的纵坐标依次是前一个的
A2019的纵坐标是()2018
故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于成本的,经试销发现:销售量()与销售单价()符合一次函数,且当时,;当时,.

(1)之间的函数表达式.

(2)在试销期间,若该商场获得利润为元,写出利润与销售单价之间的关系式,并求出利润是元时的销售单价.

(3)在试销期间,销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点从点出发,沿折线以每秒个单位长度的速度向终点运动。当点不与点重合时,在边上取一点,满足,过点,交边于点,以为边做矩形.设点的运动时间为.

1)用含的代数式表示线段的长;

2)当矩形为正方形时,求的值;

3)设矩形重叠部分图形的周长为,求之间的函数关系式;

4)作点关于直线的对称点,作点关于直线的对称点.这两点中只有一个点在矩形内部时,直接写出此时的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.

(1)求证:ABD∽△CED.

(2)若AB=6,AD=2CD,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,直线轴负半轴交于点,与轴正半轴交于点,线段的长是方程的一个根,请解答下列问题:

1)求点的坐标;

2)双曲线与直线交于点,且,求的值;

3)在(2)的条件下,点在线段上,,直线轴,垂足为,点在直线上,在直线上的坐标平面内是否存在点,使以点为顶点的四边形是矩形?若存在,请求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点G在边AB(不与点AB重合),连接DG,作CEDG于点EAFDG于点F,连接AECF.

(1)求证:DE=AF

(2),的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等式.

若等式中,已知是非零常量,请写出因变量与自变量的函数解析式;当时,求的最大值和最小值及对应的的取值.

若等式中,是非零常量,请写出因变量与自变量的函数解析式,并判断在什么范围内取值时,的增大而增大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD放置在平面直角坐标系xOy中,已知A-20),B20),D03),反比例函数yx0)的图象经过点C

1)求此反比例函数的解析式;

2)问将平行四边形ABCD向上平移多少个单位,能使点B落在双曲线上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019年,我省中考体育分值增加到55分,其中女生必考项目为八百米跑,我校现抽取九年级部分女生进行八百米测试成绩如下:

成绩

3′40″及以下

3′414′

4′01″4′20′

4′21″4′40″

4′41″及以上

等级

A

B

C

D

E

百分比

10%

25%

m

20%

n

1)求样本容量及表格中的mn的值

2)求扇形统计图中A等级所对的圆心角度数,并补全统计图.

3)我校9年级共有女生500人.若女生八百米成绩的达标成绩为4分,我校九年级女生八百米成绩达标的人数有多少?

查看答案和解析>>

同步练习册答案