把两个直角三角形如图(1)放置,使∠ACB与∠DCE重合,AB与DE相交于点O,其中∠DCE=90°,∠BAC=45°,AB=6cm,CE="5cm," CD=10cm.
(1)图1中线段AO的长= cm;DO= cm
图1
(2)如图2,把△DCE绕着点C逆时针旋转α度(0°<α<90°)得△D1CE1,D1C与AB相交于点F,若△BCE1恰好是以BC为底边的等腰三角形,求线段AF的长.
图2
(1)AO=cm;DO=cm; (2).
解析试题分析:(1)作,利用三角形相似来求出线段AO ,DO的长;
(2)连接BE1 ,过点E1作E1G⊥BC于G, 过点F作FH⊥BC于H,根据三角形相似求出BF,即可得到答案.
试题解析:(1)如图,过点A作,
∵∠ACB与∠DCE重合,∠DCE=90°,∠BAC=45°,AB= ,
∴AC=BC=6,
∵∠DCE="90°,CE=5," CD=10.
∴ED= , BE=BC-CE=6-5=1,AD=CD-AC=10-6=4,
∵
∴△AFC∽△DEC
∴ ,即AF= ,
∴ ,即EF=2,
∴BF=EF+BE=2+1=3,
∵
∴△BOE∽△BAF
∴,即AO=
,即OE=
∴DO=DE-OE=
(2) 连接BE1 ,过点E1作E1G⊥BC于G, 过点F作FH⊥BC于H,
∵△DCE绕着点C 逆时针旋转α度
∴∠E1CG=α,
∵△BCE1恰好是以BC为底边的等腰三角形,
∴E1G是线段BC的中垂线
∵E1C=5,BC=6
∴CG=BH=3,,
∵FH⊥BC,∠DCE=90°,∠BAC=45°,
∴BH=FH,令BH=FH=x,
则:CH=6-x
在△FHC与△CG E1中
∵∠E1CG +∠FCH=∠FCH +∠CFH=90°,
∴∠E1CG =∠CFH,
∵∠FHC=∠CG E1=90°,
∴△FHC∽△CG E1,
∴ ,即: ,解得 ,
∴FH=,
∵∠FHB=90°,∠BAC=45°,
∴
∴ .
考点:三角形相似.
科目:初中数学 来源: 题型:解答题
好学的小宸利用电脑作了如下的探索:
(1)如图①,将边长为2的等边三角形复制若干个后向右平移,使一条边在同一直线上.则△A2C1B1的面积为 ;
(2)求△A4C3B3的面积;
(3)在保持图①中各三角形的边OB1=B1B2=B2B3=B3B4=2不变的前提下,小宸又作了如下探究:将顶点A1、A2、A3、A4向上平移至同一高度(如图②),若OA4=OB4,试判断以OA2、OA3和OA4为三边能否构成三角形?若能,请判断这个三角形的形状;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离,颖颖与楼之间的距离(,,在一条直线上),颖颖的身高,亮亮蹲地观测时眼睛到地面的距离.你能根据以上测量数据帮助他们求出住宅楼的高度吗?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,垂足为D.
(1)若AD=9,BC=16,求BD的长;
(2)求证:AB2•BC=CD2•AD.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在梯形ABCD中,AB∥CD,∠DAB=90°,AC⊥BC.
(1)求证:△ADC∽△BCA;
(2)若AB=9cm,AC=6cm,求梯形ABCD中位线的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在△ABC中,∠B= 90°,点P从A点开始沿AB边向点B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动。
(1)如果P、Q分别从A、B两点同时出发,经过几秒钟,△PBQ的面积等于8厘米2?
(2)如果P、Q两分别从A、B两点同时出发,并且P到B又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒钟,△PCQ的面积等于12﹒6厘米2 ?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:正方形ABCD的边长为1,射线AE与射线BC交于点E,射线AF与射线CD交于点F,∠EAF=45°.
(1)如图1,当点E在线段BC上时,试猜想线段EF、BE、DF有怎样的数量关系?并证明你的猜想.
(2)设BE=x,DF=y,当点E在线段BC上运动时(不包括点B、C),如图1,求y关于x的函数解析式,并指出x的取值范围.
(3)当点E在射线BC上运动时(不含端点B),点F在射线CD上运动.试判断以E为圆心以BE为半径的⊙E和以F为圆心以FD为半径的⊙F之间的位置关系.
(4)当点E在BC延长线上时,设AE与CD交于点G,如图2.问⊿EGF与⊿EFA能否相似,若能相似,求出BE的值,若不可能相似,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com