精英家教网 > 初中数学 > 题目详情
(2003•哈尔滨)若在△ABC中,AB=5cm,BC=6cm,BC边上的中线AD=4cm,则∠ADC的度数是    度.
【答案】分析:根据题意,画出图形,根据中线的定义,求出BD,由勾股定理的逆定理判断出△ABD为直角三角形,从而求得∠ADC的度数.
解答:解:∵AB=5cm,BC=6cm,AD=4cm,
又∵AD为BC边上的中线,
∴BD=6×=3,
∴AB2=AD2+BD2
∴△ABC为直角三角形,
∴∠ADC=∠ADB=90°,
∴∠ADC的度数是90度.
点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2003•哈尔滨)已知:抛物线y=ax2+bx+c经过A(1,0)、B(5,0)两点,最高点的纵坐标为4,与y轴交于点C.
(1)求该抛物线的解析式;
(2)若△ABC的外接圆⊙O’交y轴不同于点c的点D’,⊙O’的弦DE平行于x轴,求直线CE的解析式;
(3)在x轴上是否存在点F,使△OCF与△CDE相似?若存在,求出所有符合条件的点F的坐标,并判定直线CF与⊙O’的位置关系(要求写出判断根据);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《一次函数》(03)(解析版) 题型:解答题

(2003•哈尔滨)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象).根据图象解答下列问题:
(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值范围);
(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?
(3)问快艇出发多长时间赶上轮船?

查看答案和解析>>

科目:初中数学 来源:2003年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:解答题

(2003•哈尔滨)已知:抛物线y=ax2+bx+c经过A(1,0)、B(5,0)两点,最高点的纵坐标为4,与y轴交于点C.
(1)求该抛物线的解析式;
(2)若△ABC的外接圆⊙O’交y轴不同于点c的点D’,⊙O’的弦DE平行于x轴,求直线CE的解析式;
(3)在x轴上是否存在点F,使△OCF与△CDE相似?若存在,求出所有符合条件的点F的坐标,并判定直线CF与⊙O’的位置关系(要求写出判断根据);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2003年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:解答题

(2003•哈尔滨)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象).根据图象解答下列问题:
(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值范围);
(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?
(3)问快艇出发多长时间赶上轮船?

查看答案和解析>>

科目:初中数学 来源:2003年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:填空题

(2003•哈尔滨)若分式=0,则x=   

查看答案和解析>>

同步练习册答案