精英家教网 > 初中数学 > 题目详情
如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB、AC于点E、G,连接GF。下列结论中正确的有        
;②;③四边形AEFG是菱形;④BE=2OG。
①③④
解:∵在正方形纸片ABCD中,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,
∴∠GAD=45°,∠ADG=∠ADO=22.5°,
∴∠AGD=112.5°,
∴①正确.
∵AG=FG>OG,△AGD与△OGD同高,
∴SAGD>SOGD
∴③错误.
根据题意可得:AE=EF,AG=FG,
又∵EF∥AC,
∴∠FEG=∠AGE,
又∵∠AEG=∠FEG,
∴∠AEG=∠AGE,
∴AE=AG=EF=FG,
∴四边形AEFG是菱形,
∴④正确.
∵在等腰直角三角形BEF和等腰直角三角形OFG中,BE2=2EF2=2GF2=2×2OG2
∴BE=2OG.
∴⑤正确.
故其中正确结论的序号是①③④.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知:在四边形ABFC中,=90的垂直平分线EF交BC于点D,交AB于点E,且CF=AE

(1)试探究,四边形BECF是什么特殊的四边形;
(2)当的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.
(特别提醒:表示角最好用数字)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC是等边三角形,点D是射线上BC上的一个动点(点D不与点B,C重合,△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB,AC于点F,G,连接BE。  (10′)
如图1所示,当点D在线段BC上时。(1)求证:△AEB≌△ADC;(2)探究四边形BCGE是哪种特殊的四边形,并说明理由。如图2所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将矩形ABCD沿DE折叠,使A点落在BC边上F处,若∠EFB=70°,则∠AED=
A.80°B.75°C.70°D.65°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在课外活动课上,老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm2,则对角线所用的竹条至少需       cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

对于四边形的以下说法:
①对角线互相平分的四边形是平行四边形;
②对角线相等且互相平分的四边形是矩形;
③对角线垂直且互相平分的四边形是菱形;
④顺次连结对角线相等的四边形各边的中点所得到的四边形是矩形。
其中你认为正确的个数有(   )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形AOBC中,点A的坐标为(0,8),点D的纵坐标为3,若将矩形沿直线AD折叠,则顶点C恰好落在边OB上E处,那么图中阴影部分的面积为                  (   )
A.30B.32C.34D.16

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm。点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒。

(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.

(1)  求证:DF="FE;"
(2)  若AC=2CF,∠ADC=60 o, AC⊥DC,求BE的长;
(3)  在(2)的条件下,求四边形ABED的面积.

查看答案和解析>>

同步练习册答案