精英家教网 > 初中数学 > 题目详情
7.数学活动-旋转变换
(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;
(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.
(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;
(Ⅱ)连接A′B,求线段A′B的长度;
(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)

分析 (1)根据∠A′B′B=∠A′B′C-∠BB′C,只要求出∠BB′C即可.
(2)(Ⅰ)结论:直线BB′与⊙A′相切.只要证明∠A′B′B=90°即可.(Ⅱ)在Rt△ABB′中,利用勾股定理计算即可.
(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.只要证明∠A′B′B=90°即可解决问题.在△CBB′中求出BB′,再在Rt△A′B′B中利用勾股定理即可.

解答 解;(1)如图①中,∵△A′B′C是由△ABC旋转得到,
∴∠A′B′C=∠ABC=130°,CB=CB′,
∴∠CBB′=∠CB′B,∵∠BCB′=50°,
∴∠CBB′=∠CB′B=65°,
∴∠A′B′B=∠A′B′C-∠BB′C=65°.
(2)(Ⅰ)结论:直线BB′与⊙A′相切.
理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′,
∴∠CBB′=∠CB′B,∵∠BCB′=60°,
∴∠CBB′=∠CB′B=60°,
∴∠A′B′B=∠A′B′C-∠BB′C=90°.
∴AB′⊥BB′,
∴直线BB′与⊙A′相切.
(Ⅱ)∵在Rt△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,
∴A′B=$\sqrt{AB{′}^{2}+B′{B}^{2}}$=$\sqrt{34}$.
(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.
理由:∵∠A′B′C=∠ABC=α,CB=CB′,
∴∠CBB′=∠CB′B,∵∠BCB′=2β,
∴∠CBB′=∠CB′B=$\frac{180°-2β}{2}$,
∴∠A′B′B=∠A′B′C-∠BB′C=α-90°+β=180°-90°=90°.
∴AB′⊥BB′,
∴直线BB′与⊙A′相切.
在△CBB′中,∵CB=CB′=n,∠BCB′=2β,
∴BB′=2•nsinβ,
在Rt△A′BB′中,A′B=$\sqrt{BB{′}^{2}+A′B{′}^{2}}$=$\sqrt{{m}^{2}+4{n}^{2}si{n}^{2}β}$.

点评 本题考查圆的综合题、旋转不变性、勾股定理、切线的判定、等腰三角形的性质等知识,解题的关键是熟练运用这些知识解决问题,充分利用旋转不变性,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为$\frac{3}{4}$m,到墙边OA的距离分别为$\frac{1}{2}$m,$\frac{3}{2}$m.
(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;
(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,直线l:y=-x+1与x轴,y轴分别交于A,B两点,点P,Q是直线l上的两个动点,且点P在第二象限,点Q在第四象限,∠POQ=135°.
(1)求△AOB的周长;
(2)设AQ=t>0,试用含t的代数式表示点P的坐标;
(3)当动点P,Q在直线l上运动到使得△AOQ与△BPO的周长相等时,记tan∠AOQ=m,若过点A的二次函数y=ax2+bx+c同时满足以下两个条件:
①6a+3b+2c=0;
②当m≤x≤m+2时,函数y的最大值等于$\frac{2}{m}$,求二次项系数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.
(1)求证:△BCF≌△BA1D.
(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:
抽取的200名学生海选成绩分组表
 组别海选成绩x 
 A组 50≤x<60
 B组 60≤x<70
 C组 70≤x<80
 D组 80≤x<90
 E组 90≤x<100
请根据所给信息,解答下列问题:
(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为15,表示C组扇形的圆心角θ的度数为72度;
(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.2016的倒数是(  )
A.$\frac{1}{2016}$B.-$\frac{1}{2016}$C.2016D.-2016

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在平面直角坐标系中,已知点A(-3,6),B(-9,-3),以原点O为位似中心,相似比为$\frac{1}{3}$,把△ABO缩小,则点A的对应点A′的坐标是(  )
A.(-1,2)B.(-9,18)C.(-9,18)或(9,-18)D.(-1,2)或(1,-2)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案