精英家教网 > 初中数学 > 题目详情
14、如图AB是⊙O的直径,∠A=30°,延长OB到D使BD=OB.
(1)△OBC是否是等边三角形?说明理由;
(2)求证:DC是⊙O的切线.
分析:(1)根据同弧所对的圆周角等于它所对的圆心角的一半,可知∠BOC=60°,又OB=OC,依此可以证明△OBC是否是等边三角形.
(2)要证PC是⊙O的切线,只要证明∠DCO=90°即可.
解答:解:(1)∵∠A=30°,
∴∠BOC=60°,
∵OB=OC,
∴△OBC是等边三角形.

(2)∵BD=OB,△OBC是等边三角形.
∴∠OCB=∠OBC=60°,BD=BC.
∴∠BCD=30°.
∴∠OCD=90°.
∴DC是⊙O的切线.
点评:本题考查了等边三角形的判定和切线的判定.
注意:有一个角是60°的等腰三角形是等边三角形;
要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图AB是⊙O的直径,C是⊙O上的一点,若AC=8cm,AB=10cm,OD⊥BC于点D,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图AB是⊙O的直径,弦DC⊥AB于点E,在
AD
上取一点F,连接精英家教网CF交AB于点M,连接DF并延长交BA的延长线于点N.
求证:
(1)∠DFC=∠DOB;
(2)MN•OM=MC•FM.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图AB是⊙O的直径,∠D=35°,则∠AOC=
70°
70°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•自贡)如图AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)若AB=2,∠P=30°,求AP的长;
(2)若D为AP的中点,求证:直线CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南昌)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.
(1)在图1中,画出△ABC的三条高的交点;
(2)在图2中,画出△ABC中AB边上的高.

查看答案和解析>>

同步练习册答案