如图所示,已知四边形OABC是菱形,∠O=60°,点M是边OA的中点,以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM.若BM=,的长是.求证:直线BC与⊙O相切.
证明见解析
【解析】
试题分析:过点O作OF⊥BC于F,过点B作BG⊥OA于G,则四边形BGOF为矩形,OF=BG。设菱形OABC的边长为2a,先在Rt△BMG中,利用勾股定理得出BG2+GM2=BM2,即(a)2+(2a)2=()2,求得a=1,得到OF=,再根据弧长公式求出r=,则圆心O到直线BC的距离等于圆的半径r,从而判定直线BC与⊙O相切。
证明:如图,过点O作OF⊥BC于F,过点B作BG⊥OA于G,则四边形BGOF为矩形,OF=BG.
设菱形OABC的边长为2a,则AM=OA=a.
∵菱形OABC中,AB∥OC,∠COA =60°,
∴∠BAG=∠COA=60°,∠ABG=90°﹣60°=30°。
∴AG=AB=a,BG=AG=a。
在Rt△BMG中,
∵∠BGM=90°,BG=aGM=a+a=2a,BM=,
∴BG2+GM2=BM2,即(a)2+(2a)2=()2,解得a=1。∴OF=BG=。
又∵的长=,∴r=。
∴OF=r=,即圆心O到直线BC的距离等于圆的半径r。
∴直线BC与⊙O相切。
科目:初中数学 来源: 题型:
7 |
DE |
| ||
3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
7 |
DE |
| ||
3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com