精英家教网 > 初中数学 > 题目详情
如图所示,⊙O的半径OD为5cm,直线l⊥OD,垂足为O,则直线l沿射线OD方向平移______cm时与⊙O相切.
∵直线l与⊙O相切,
∴OD=5,
又∵此时l过圆心,故需平移5cm.
故答案为:5.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,已知点A的坐标为(
3
,3),AB丄x轴,垂足为B,连接OA,反比例函数y=
k
x
(k>0)的图象与线段OA、AB分别交于点C、D.若AB=3BD,以点C为圆心,CA的
5
4
倍的长为半径作圆,则该圆与x轴的位置关系是______(填”相离”,“相切”或“相交“).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠ABC=90°,AB=6,BC=8.以AB为直径的⊙O交AC于D,E是BC的中点,连接ED并延长交BA的延长线于点F.
(1)求证:DE是⊙O的切线;
(2)求DB的长;
(3)求S△FAD:S△FDB的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.
(1)求证:MN是半圆的切线.
(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.
(3)在(2)的条件下,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,A是半径为2的⊙O上的一点,P是OA延长线上的一动点,过P作⊙O的切线,切点为B,设PA=m,PB=n.
(1)当n=4时,求m的值;
(2)⊙O上是否存在点C,使△PBC为等边三角形?若存在,请求出此时m的值;若不存在,请说明理由;
(3)当m为何值时,⊙O上存在唯一点M和PB构成以PB为底的等腰三角形?并直接答出:此时⊙O上能与PB构成等腰三角形的点共有几个?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°
(1)试判断CD和⊙O的位置关系,并说明理由;
(2)若AB=4,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,AC为弦,且平分∠BAD,AD⊥CD,垂足为D.
求证:CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知△ABC中,AB=AC,以AB为直径作⊙O交BC于D,交AC于E,过D作DF⊥AC于F
(1)求证:DF是⊙O的切线;
(2)连接DE,且AB=4,若∠FDC=30°,试求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.
(1)求证:DC是⊙O的切线;
(2)若AB=2,求DC的长.

查看答案和解析>>

同步练习册答案