精英家教网 > 初中数学 > 题目详情
如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为(    ),G点坐标为(    );
(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.
解:(1)解方程x2+2x﹣3=0
得x1=﹣3,x2=1.
∴抛物线与x轴的两个交点坐标为:C(﹣3,0),B(1,0),
设抛物线的解析式为y=a(x+3)(x﹣1).
∵A(3,6)在抛物线上,
∴6=a(3+3)·(3﹣1),
∴a=
∴抛物线解析式为y=x2+x﹣
(2)由y=x2+x﹣=(x+1)2﹣2,
∴抛物线顶点P的坐标为(﹣1,﹣2),对称轴方程为x=﹣1.
设直线AC的方程为y=kx+b,
∵A(3,6),C(﹣3,0)在该直线上,

∴直线AC的方程为:y=x+3.
将x=﹣1代入y=x+3得y=2,
∴G点坐标为(﹣1,2).
(3)作A关于x轴的对称点A′(3,﹣6),连接A′G,A′G与x轴交于点M即为所求的点.
设直线A′G的方程为y=kx+b.

∴直线A′G的方程为y=﹣2x,
令x=0,则y=0.
∴M点坐标为(0,0).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,一元二次方程x2+2x-3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交精英家教网点C,B的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为
 
,G点坐标为
 

(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x精英家教网轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一元二次方程x2-2x-3=0的两根x1,x2是抛物线y=ax2+bx+c与x轴的两个交点A、B的精英家教网横坐标,此抛物线与y轴的正半轴交于点C.
(1)求A、B两点的坐标,并写出抛物线的对称轴;
(2)设点B关于点A的对称点为B′.问:是否存在△BCB′为等腰三角形的情形?若存在,请求出所有满足条件c的值;若不存在,请直接作否定的判断,不必说明理由.

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》常考题集(24):20.5 二次函数的一些应用(解析版) 题型:解答题

如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年四川省泸州市中考数学模拟试卷(解析版) 题型:解答题

如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.

查看答案和解析>>

同步练习册答案