【题目】如图,矩形纸片中,,把纸片沿直线折叠,点落在处,交于点,若,则的面积为( )
A.B.C.D.
【答案】A
【解析】
由矩形的性质可得∠B=90°,AB∥CD,可得∠DCA=∠CAB,由折叠的性质可得BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB=∠DCA,可得AO=OC=5cm,由勾股定理可求OE的长,即可求△ABC的面积.
解:∵四边形ABCD是矩形
∴∠B=90°,AB∥CD
∴∠DCA=∠CAB
∵把纸片ABCD沿直线AC折叠,点B落在E处,
∴BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB,
∴∠DCA=∠EAC
∴AO=OC=5cm
∴,
∴AE=AO+OE=8cm,
∴AB=8cm,
∴△ABC的面积=×AB×BC=16cm2,
故选:A.
科目:初中数学 来源: 题型:
【题目】某市计划修建一条长60千米的地铁,根据甲,乙两个地铁修建公司标书数据发现:甲,乙两公司每天修建地铁长度之比为3:5;甲公司单独完成此项工程比乙公司单独完成此项工程要多用240天.
(1)求甲,乙两个公司每天分别修建地铁多少千米?
(2)该市规定:“该工程由甲,乙两个公司轮流施工完成,工期不超过450天,且甲公司工作天数不少于乙公司工作天数的”.设甲公司工作a天,乙公司工作b天.
①请求出b与a的函数关系式及a的取值范围;
②设完成此项工程的工期为W天,请求出W的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为( )
A. (﹣4,﹣2﹣) B. (﹣4,﹣2+) C. (﹣2,﹣2+) D. (﹣2,﹣2﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某玩具店将进货价为元的玩具以元的销售价售出,平均每月能售出个市场调研表明:当销售价每涨价元时,其销售量将减少2个.
(1)设每个玩具的销售价上涨元,试用含的式子填空:
①涨价后,每个玩具的销售价为 元;
②涨价后,每个玩具的利润为 元;
③涨价后,玩具的月销售量为 个.
(2)玩具店老板要想让该玩具的销售利润平均每月达到1600元,销售员甲说:“在原售价每个90元的基础上再上涨30元,可以完成任务”销售员乙说:“不用涨那么多,在原售价每个90元的基础上再上涨10元就可以了”判断销售员甲与销售员乙的说法是否正确,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.
(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数y=(k常数,k≠1).
(1)若点A(2,1)在这个函数的图象上,求k的值;
(2)若k=9,试判断点B(﹣,﹣16)是否在这个函数的图象上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用a、b、c作三角形的三边,其中不能构成直角三角形的是( )
A. a2=(b+c)(b﹣c) B. a:b:c=1: :2
C. a=32,b=42,c=52 D. a=5,b=12,c=13
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解题)先阅读下列一段文字,然后解答问题:
已知:方程
方程
方程
方程
问题:观察上述方程及其解,再猜想出方程: 的解,并试着解分式方程验证.
【答案】
【解析】试题分析:首先通过观察发现,它的规律是:方程x的解为x1=n+1,x2=,利用这个规律就可以求出方程的解.
试题解析:∵
∴x2-11x-120=0
解得: .
【题型】解答题
【结束】
20
【题目】(2017北京市)关于x的一元二次方程.
(1)求证:方程总有两个实数根;
(2)若方程有一根小于1,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),一架长4米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子与地面的倾斜角α为60°.
(1)求AO与BO的长;
(2)若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.如图(2),当A点下滑到A′点,B点向右滑行到B′点时,梯子AB的中点P也随之运动到P′点,若∠POP′=15°,试求AA′的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com