精英家教网 > 初中数学 > 题目详情
地表以下的岩层温度随着所处深度的变化而变化,在某个地点的关系可以由公式来表示,则的增大1而(     )
A.增大35B.减小 35C.不变D.以上答案都不对
选A
当x=1时,y=55,当x=2时,y=90,当x=3时,y=125,所以,每当x增加1,y增加35,故选A。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知A(-4,)、B(2,-4)是一次函数的图象和反比例函数的图象的两个交点。
(1)求反比例函数和一次函数的解析式;
(2)求直线AB和轴的交点C的坐标及△AOB的面积;
(3)求方程的解(请直接写出答案);
(4)求不等式的解集(请直接写出答案)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若一次函数的图像过点(0,2),且函数y随自变量x的增大而增大,请写出一个符合要求的一次函数表达式:_________

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知反比例函数(x > 0,k是常数)的图象经过点A(1,4),点B(m , n),其中m>1, AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.
(1)写出反比例函数解析式;
(2)求证:∆ACB∽∆NOM;
(3)若∆ACB与∆NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,A1B1和A2B2是水面上相邻的两条赛道(看成两条互相平行的线段).甲是一名游泳运动健将,乙是一名游泳爱好者,甲在赛道A1B1上从A1处出发,到达B1后,以同样的速度返回A1处,然后重复上述过程;乙在赛道A2B2上以2m/s的速度从B2处出发,到达A2后以相同的速度回到B2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设离开池边B1B2的距离为y(m),运动时间为t(s),甲游动时,y(m)与t(s)的函数图象如图2所示.
(1)赛道的长度是   m,甲的速度是   m/s;
(2)分别写出甲在时,y关于t的函数关系式:
,y=    ;当时,y=   
(3)在图2中画出乙在2分钟内的函数大致图象(用虚线画);
(4)请你根据(3)中所画的图象直接判断,若从甲、乙两人同时开始出发到2分钟为止,甲、乙共相遇了几次?2分钟时,乙距池边B1B2的距离为多少米。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:关于x的一元二次方程mx2﹣(4m+1)x+3m+3="0" (m>1).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=x1﹣3x2,求这个函数的解析式;
(3)将(2)中所得的函数的图象在直线m=2的左侧部分沿直线m=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m的函数y=2m+b的图象与此图象有两个公共点时,b的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了实现“畅通市区”的目标,市地铁一号线准备动工,市政府现对地铁一号线第15标段工程进行招标,施工距离全长为300米.经招标协定,该工程由甲、乙两公司承建,甲、乙两公司施工方案及报价分别为:(1)甲公司施工单价y1(万元/米)与施工长度x(米)之间的函数关系为y1=27.8-0.09x,(2)乙公司施工单价y2(万元/米)与施工长度x(米)之间的函数关系为y2=15.8-0.05x.
(注:工程款=施工单价×施工长度)
(1)如果不考虑其他因素,单独由甲公司施工,那么完成此项工程需工程款多少万元?
(2)考虑到设备和技术等因素,甲公司必须邀请乙公司联合施工,共同完成该工程.因设备共享,两公司联合施工时市政府可节省工程款140万元(从工程款中扣除).
①如果设甲公司施工a米(0<a<300),那么乙公司施工______米,其施工单价y2=_______万元/米,试求市政府共支付工程款P(万元)与a(米)之间的函数关系式;
②如果市政府支付的工程款为2 900万元,那么应将多长的施工距离安排给乙公司施工?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=(m+3)x+m-4,y随x的增大而增大,
(1)求m的取值范围;
(2)如果这个一次函数又是正比例函数,求m的值;
(3)如果这个一次函数的图象与y轴正半轴有交点,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

2013年4月20日08时02分在四川雅安芦山县发生7.0级地震,人民生命财产遭受重大损失.某部队接到上级命令,乘车前往灾区救援,前进一段路程后,由于道路受阻,车辆无法通行,通过短暂休整后决定步行前往.则能反映部队与灾区的距离(千米)与时间(小时)之间函数关系的大致图象是(   )。

查看答案和解析>>

同步练习册答案