精英家教网 > 初中数学 > 题目详情

已知I是△ABC的内心,∠B=80°,则∠AIC等于

[  ]

A.110°
B.120°
C.130°
D.140°

答案:C
提示:

∵∠B=80°,∴∠BAC+∠BCA=100°,∴∠IAC+∠ICA=50°,

∴∠AIC=180°-50°=130°.熟悉内心是角平分线的交点.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC中,已知AB=AC,△DEF是△ABC的内接正三角形,α=∠BDF,β=∠CED,γ=∠AFE,则用β、γ表示α的关系式是
α=
β+γ
2
α=
β+γ
2

查看答案和解析>>

科目:初中数学 来源: 题型:

我们定义:“四个顶点都在三角形边上的正方形是三角形的内接正方形”.
已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.
(1)如图1,四边形CDEF是△ABC的内接正方形,则正方形CDEF的边长a1
2
2

(2)如图2,四边形DGHI是(1)中△EDA的内接正方形,则第2个正方形DGHI的边长a2=
4
3
4
3
;继续在图2中的△HGA中按上述方法作第3个内接正方形;…以此类推,则第n个内接正方形的边长an=
2n
3n-1
2n
3n-1
.(n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,试说明AB-FC=BD.小明同学的思考过程如下,你能理解他的想法吗?试着在括号内写出理由.
证明:∵FC∥AB
∴∠A=∠ECF (
两直线平行,内错角相等
两直线平行,内错角相等

在△ADE和△CFE中
∵DE=EF
∠A=∠ECF(已证)
∠AED=∠CEF (
对顶角相等
对顶角相等

∴△ADE≌△CFE (
AAS
AAS

∴AD=FC (
全等三角形的对应边相等
全等三角形的对应边相等

又∵AB-AD=BD
∴AB-FC=BD.

查看答案和解析>>

科目:初中数学 来源: 题型:047

如图,已知CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.

求证:∠EBC<∠ACE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,试说明AB-FC=BD.小明同学的思考过程如下,你能理解他的想法吗?试着在括号内写出理由.
证明:∵FC∥AB
∴∠A=∠ECF (________)
在△ADE和△CFE中
∵DE=EF
∠A=∠ECF(已证)
∠AED=∠CEF (________)
∴△ADE≌△CFE (________)
∴AD=FC (________)
又∵AB-AD=BD
∴AB-FC=BD.

查看答案和解析>>

同步练习册答案