精英家教网 > 初中数学 > 题目详情

作业宝如图,已知正方形ABCD的对角线AC、BD相交于O,经过A、O的圆分别与AB、AD相交于E、F,EF与AO相交于G,AD=16.
(1)图中有哪些三角形与△AGF相似(只写出结论,不必证明);
(2)试证明AE+AF是一个定值,并指出这个定值为多少?
(3)若AG:GO=3:5,且AF>AE,求DH的长.

解:(1)与△AGF相似的有△EGO、△AEO、△DFO;
(2)∵四边形ABCD是正方形,
∴OA=OD,∠BAO=∠DAO=45°,
在△AEO与△DFO中

∴△AEO≌△DFO(AAS),
∴AE=DF,
∴AE+AF=AD=16;
(3)∵四边形ABCD是正方形,
∴△OAD为等腰直角三角形,
∴OA=OD=AD=8
∵AG:GO=3:5,
∴AG=3,GO=5
∵△EGO∽△AEO,
∴OE:OA=OG:OE,即OE2=OA•OG=8•5=80,
∴OE=4
∵∠EAO=∠EFO=45°,∠EOF=90°,
∴△OEF为等腰直角三角形,
∴EF=OE=4
∵△AGF∽△EGO,
∴AG:EG=FG:OG,即3:EG=(4-EG):5
解得EG=,EG=3(舍去),
∴AF:OE=AG:EG,即AF:4=3
∴AF=12,
∴DF=AD-AF=4,
∵DF•DA=DH•DO,
∴DH==4
分析:(1)根据正方形的性质得到∠EAO=∠FAG=∠FDO=45°,根据同弧所对的圆周角相等得到∠OEG=∠OAF=45°,∠AOE=∠AFO,根据圆周角定理由∠EAF=90°得到EF为⊙O的直径,则∠EOF=90°,而∠AOD=90°,根据等角的余角相等得到∠AOE=∠DOF,然后利用三角形相似的判定可得到△AGF∽△EGO∽△AEO∽△DFO;
(2)首先可证△AEO≌△DFO,即可得AE=DF,继而求得AE+AF的值;
(3)根据正方形的性质可判断△OAD为等腰直角三角形,则OA=OD=AD=8,所以AG=3,GO=5,再由△EGO∽△AEO,利用相似比可计算出OE=4
再判断△OEF为等腰直角三角形,则EF=OE=4,接着由△AGF∽△EGO,利用相似比可先计算EG=,再计算出AF=12,则DF=AD-AF=4,
然后根据切割线定理计算DH.
点评:此题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;相似三角形对应角相等,对应边的比相等.也考查了全等三角形的判定与性质、圆周角定理和正方形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边AB与正方形AEFM的边AM在同一直线上,直线BE与DM交于点N.求证:BN⊥DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G (保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=
a
a
时,S△FGE=S△FBE;当CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 时,S△FGE=3S△FBE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线交于O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.
(1)试说明OE=OF;
(2)当AE=AB时,过点E作EH⊥BE交AD边于H.若该正方形的边长为1,求AH的长.

查看答案和解析>>

同步练习册答案