18£®Èçͼ£¬ËıßÐÎOP1A1B1¡¢A1P2A2B2¡¢A2P3A3B3¡¢¡­¡¢An-1PnAnBn¶¼ÊÇÕý·½ÐΣ¬¶Ô½ÇÏßOA1¡¢A1A2¡¢A2A3¡¢¡­¡¢An-1An¶¼ÔÚyÖáÉÏ£¨n¡Ý1µÄÕûÊý£©£¬µãP1£¨x1£¬y1£©£¬µãP2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©ÔÚ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©µÄͼÏóÉÏ£¬²¢ÒÑÖªB1£¨-1£¬1£©£®
£¨1£©Çó·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄ½âÎöʽ£»
£¨2£©ÇóµãP2ºÍµãP3µÄ×ø±ê£»
£¨3£©ÓÉ£¨1£©¡¢£¨2£©µÄ½á¹û»ò¹æÂÉÊÔ²ÂÏë²¢Ö±½Óд³ö£º¡÷PnBnOµÄÃæ»ýΪ1£¬µãPnµÄ×ø±êΪ£¨$\sqrt{n}$-$\sqrt{n-1}$£¬$\sqrt{n}$+$\sqrt{n-1}$£©£¨Óú¬nµÄʽ×Ó±íʾ£©£®

·ÖÎö £¨1£©ÓÉËıßÐÎOP1A1B1ΪÕý·½ÐÎÇÒOA1ÊǶԽÇÏßÖªB1ÓëP1¹ØÓÚyÖá¶Ô³Æ£¬µÃ³öµãP1£¨1£¬1£©£¬¾Ý´Ë¿ÉµÃ´ð°¸£»
£¨2£©Á¬½ÓP2B2¡¢P3B3£¬·Ö±ð½»yÖáÓÚµãE¡¢F£¬ÓɵãP1×ø±ê¼°Õý·½ÐεÄÐÔÖÊÖªOA1=2£¬¾Ý´Ë¿ÉÉèP2µÄ×ø±êΪ£¨a£¬a+2£©£¬´úÈë½âÎöʽÇóµÃaµÄÖµ¼´¿É£¬Í¬Àí¿ÉµÃµãP3µÄ×ø±ê£»
£¨3£©ÓÉ${S}_{¡÷{P}_{1}{B}_{1}O}$=2${S}_{¡÷{P}_{1}CO}$=2¡Á$\frac{1}{2}$=1£¬${S}_{¡÷{P}_{2}{B}_{2}O}$=2${S}_{¡÷{P}_{2}EO}$=2¡Á$\frac{1}{2}$=1¿ÉÖª¡÷PnBnOµÄÃæ»ýΪ1£¬¸ù¾ÝP1£¨1£¬1£©¡¢P2£¨$\sqrt{2}$-1£¬$\sqrt{2}$+1£©¡¢P3£¨$\sqrt{3}$-$\sqrt{2}$£¬$\sqrt{3}$+$\sqrt{2}$£©ÖªµãPnµÄ×ø±êΪ£¨$\sqrt{n}$-$\sqrt{n-1}$£¬$\sqrt{n}$+$\sqrt{n-1}$£©£®

½â´ð ½â£º£¨1£©ÔÚÕý·½ÐÎOP1A1B1ÖУ¬OA1ÊǶԽÇÏߣ¬
ÔòB1ÓëP1¹ØÓÚyÖá¶Ô³Æ£¬
¡ßB1£¨-1£¬1£©£¬
¡àP1£¨1£¬1£©£®
Ôòk=1¡Á1=1£¬¼´·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{1}{x}$£»

£¨2£©Á¬½ÓP2B2¡¢P3B3£¬·Ö±ð½»yÖáÓÚµãE¡¢F£¬

ÓÖµãP1µÄ×ø±êΪ£¨1£¬1£©£¬
¡àOA1=2£¬
ÉèµãP2µÄ×ø±êΪ£¨a£¬a+2£©£¬
´úÈëy=$\frac{1}{x}$µÃa=$\sqrt{2}$-1£¬
¹ÊµãP2µÄ×ø±êΪ£¨$\sqrt{2}$-1£¬$\sqrt{2}$+1£©£¬
ÔòA1E=A2E=2$\sqrt{2}$-2£¬OA2=OA1+A1A2=2$\sqrt{2}$£¬
ÉèµãP3µÄ×ø±êΪ£¨b£¬b+2$\sqrt{2}$£©£¬
´úÈëy=$\frac{1}{x}$£¨x£¾0£©¿ÉµÃb=$\sqrt{3}$-$\sqrt{2}$£¬
¹ÊµãP3µÄ×ø±êΪ£¨$\sqrt{3}$-$\sqrt{2}$£¬$\sqrt{3}$+$\sqrt{2}$£©

£¨3£©¡ß${S}_{¡÷{P}_{1}{B}_{1}O}$=2${S}_{¡÷{P}_{1}CO}$=2¡Á$\frac{1}{2}$=1£¬${S}_{¡÷{P}_{2}{B}_{2}O}$=2${S}_{¡÷{P}_{2}EO}$=2¡Á$\frac{1}{2}$=1£¬¡­
¡à¡÷PnBnOµÄÃæ»ýΪ1£¬
ÓÉP1£¨1£¬1£©¡¢P2£¨$\sqrt{2}$-1£¬$\sqrt{2}$+1£©¡¢P3£¨$\sqrt{3}$-$\sqrt{2}$£¬$\sqrt{3}$+$\sqrt{2}$£©ÖªµãPnµÄ×ø±êΪ£¨$\sqrt{n}$-$\sqrt{n-1}$£¬$\sqrt{n}$+$\sqrt{n-1}$£©£¬
¹Ê´ð°¸Îª£º1¡¢£¨$\sqrt{n}$-$\sqrt{n-1}$£¬$\sqrt{n}$+$\sqrt{n-1}$£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é·´±ÈÀýº¯ÊýϵÊýkµÄ¼¸ºÎÒâÒå¡¢´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¼°Õý·½ÐεÄÐÔÖÊ£¬ÊìÁ·ÕÆÎÕÕý·½ÐεÄÐÔÖÊÉè³öËùÇóµãµÄ×ø±êÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Ò»¸öµÈÑüÈý½ÇÐεÄÁ½Íâ½ÇµÄ±ÈΪ1£º4£¬ÔòËüµ×½ÇµÄÍâ½ÇµÄ¶ÈÊýΪ160¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔÚ¿ªÕ¹Ð£Ô°×ãÇò¶Ô¿¹ÈüÖУ¬¹æ¶¨Ã¿¶Óʤһ³¡µÃ3·Ö£¬Æ½Ò»³¡µÃ1·Ö£¬¸ºÒ»³¡µÃ0·Ö£¬ÎÒУŮ×Ó×ãÇò¶ÓÒ»¹²±ÈÈüÁË10³¡£¬ÇÒ±£³ÖÁ˲»°ÜÕ½¼¨£¬Ò»¹²µÃÁË22·Ö£¬ÎÒУŮ×Ó×ãÇò¶ÓʤÁ˶àÉÙ³¡£¿Æ½Á˶àÉÙ³¡£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¡°¶ËÎç½Ú¡±ÊÇÎÒ¹úµÄ´«Í³¼Ñ½Ú£¬Ãñ¼äÀúÀ´Óгԡ°ôÕ×Ó¡±µÄÏ°Ë×£®ÎÒÊÐijʳƷ³§ÎªÁ˽âÊÐÃñ¶ÔÈ¥ÄêÏúÁ¿½ÏºÃµÄÈâÏÚôÕ¡¢¶¹É³ÏÚôÕ¡¢ºìÔæÏÚôÕ¡¢µ°»ÆÏÚôÕ£¨ÒÔÏ·ֱðÓÃA¡¢B¡¢C¡¢D±íʾ£©ÕâËÄÖÖ²»Í¬¿ÚζôÕ×ÓµÄϲ°®Çé¿ö£¬ÔÚ½ÚÇ°¶Ôij¾ÓÃñÇøÊÐÃñ½øÐÐÁ˳éÑùµ÷²é£¬²¢½«µ÷²éÇé¿ö»æÖƳÉÈçÏÂÁ½·ùͳ¼Æͼ£¨Éв»ÍêÕû£©£®

Çë¸ù¾ÝÒÔÉÏÐÅÏ¢»Ø´ð£º
£¨1£©½«Á½·ù²»ÍêÕûµÄͼ²¹³äÍêÕû£»
£¨2£©±¾´Î²Î¼Ó³éÑùµ÷²éµÄ¾ÓÃñÓжàÉÙÈË£¿
£¨3£©Èô¾ÓÃñÇøÓÐ8000ÈË£¬Çë¹À¼Æ°®³ÔDôÕµÄÈËÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬µãB£¬E£¬C£¬FÔÚͬһÌõÖ±ÏßÉÏ£¬AB=DE£¬AC=DF£¬¡ÏA=¡ÏD£®
ÇóÖ¤£ºAB¡ÎDE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬Ö±Ïßy=2x+2ÓëxÖá½»ÓÚµãA£¬Óë yÖá½»ÓÚµãB£¬°Ñ¡÷AOBÑØyÖá·­Îö£¬µãAÂäµ½Cµã£¬¹ýµãBµÄÅ×ÎïÏßy=-x2+bx+cÓëÖ±ÏßBC½»ÓÚµãD£¨3£¬-4£©£®
£¨1£©ÇóÖ±ÏßBDºÍÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚµÚÒ»ÏóÏÞÄÚµÄÅ×ÎïÏßÉÏ£¬ÊÇ·ñ´æÔÚÒ»µãM£¬×÷MN´¹Ö±ÓÚxÖᣬ´¹×ãΪµãN£¬Ê¹µÃÒÔM£¬O£¬NΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷BOCÏàËÆ£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÔÚÖ±ÏßBDÉÏ·½µÄÅ×ÎïÏßÉÏÓÐÒ»¶¯µãP£¬¹ýµãP×÷PH´¹Ö±ÓÚxÖᣬ½»Ö±ÏßBDÓÚµãH£¬µ±ËıßÐÎB£¬O£¬H£¬PÊÇƽÐÐËıßÐÎʱ£¬ÊÔÇ󶯵ãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$3\sqrt{15}¡Â\sqrt{3}=3\sqrt{5}$B£®a2¡Áa3=a6C£®a2+a=a3D£®£¨-2a2£©3=-6a6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¼ÆË㣺2-1+4cos45¡ã-£¨¦Ð-2017£©0-$\sqrt{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èçͼ£¬ÔÚ4¡Á3³¤·½ÐÎÍø¸ñÖУ¬ÈÎÑ¡È¡Ò»¸ö°×É«µÄСÕý·½Ðβ¢Í¿ºÚ£¬Ê¹Í¼ÖкÚÉ«²¿·ÖµÄͼÐι¹³ÉÒ»¸öÖá¶Ô³ÆͼÐεĸÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{1}{12}$C£®$\frac{1}{3}$D£®$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸