精英家教网 > 初中数学 > 题目详情

【题目】积极响应政府提出的“绿色发展·碳出行”号召,某社区决定购置一批共享单车,经市场调查知,购买3量男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.

(1)求男式单车和女式单车的单价;

(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?

【答案】(1)男式单车2000元/辆,女式单车1500元/辆;(2)该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.

【解析】试题分析:(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.

试题解析:(1)设男式单车x元/辆,女式单车y元/辆,

根据题意,得:

解得:

答:男式单车2000元/辆,女式单车1500元/辆;

(2)设购置女式单车m辆,则购置男式单车(m+4)辆,

根据题意,得:

解得:9≤m≤12,

m为整数,

m的值可以是9、10、11、12,即该社区有四种购置方案;

设购置总费用为W,

则W=2000(m+4)+1500m=3500m+8000,

W随m的增大而增大,

当m=9时,W取得最小值,最小值为39500,

答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学习了统计知识后,班主任王老师叫班长就本班同学的上学方式进行了一次调查统计,图1和图2是他通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:

(1)在扇形统计图中,计算出“步行”部分所对应的圆心角的度数;

(2)求该班共有多少名学生;

(3)在图1中,将表示“乘车”的部分补充完整.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是( )

①x=1是二次方程ax2+bx+c=0的一个实数根;

②二次函数y=ax2+bx+c的开口向下;

③二次函数y=ax2+bx+c的对称轴在y轴的左侧;

④不等式4a+2b+c>0一定成立.

A. ①② B. ①③ C. ①④ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a,b,c是三角形的三条边,则|a+b﹣c|﹣|c﹣a﹣b|的化简结果为(  )

A. 0 B. 2a+2b C. 2c D. 2a+2b﹣2c

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,AOC=50°.

(1)求出∠AOB及其补角的度数;

(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC的三边分别是abc,试化简|abc|+|bc+a|﹣|cba|值为( )

A. a+b+cB. 3a+b3cC. a+b-cD. 3ab+3c

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:
(1)1﹣ =
(2) =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过反比例函数y= (x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2 , 比较它们的大小,可得(
A.S1>S2
B.S1=S2
C.Sl<S2
D.大小关系不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A在数轴上对应的数为a,点B对应的数为b,且ab满足|a+3|+b﹣22=0

1)求AB两点的对应的数ab

2)点C在数轴上对应的数为x,且x是方程2x+1=x8的解.

①求线段BC的长;

②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.

查看答案和解析>>

同步练习册答案