精英家教网 > 初中数学 > 题目详情
3.因式分解:9(m+n)2-(m-n)2

分析 利用平方差公式直接分解因式得出即可.

解答 解:9(m+n)2-(m-n)2
=[3(m+n)+(m-n)][3(m+n)-(m-n)]
=4(2m+n)(m+2n).

点评 此题主要考查了公式法分解因式,正确记忆公式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.已知x+$\sqrt{10}$=2,求$\frac{1}{2}$x2-2x-$\frac{7}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.观察下列各式:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;

(1)根据上面各式的规律可得:(x-1)(xn+xn-1+…+x+1)=xn+1-1(其中n是正整数)
(2)运用以上规律:计算:1+2+22+23+…+210的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,AB是半圆的直径,点D是$\widehat{BC}$的中点,且AB=4,∠BAC=50°,则AD的长度为$\frac{13}{9}$πcm(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在正方形ABCD中,分别以AD,BC为斜边作Rt△ADE和Rt△CBF,且Rt△ADE≌Rt△CBF,连结EF,若S正方形ABCD=20,S△ADE=3,则EF=4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,已知平面直角坐标系内,A(-1,0),B(3,0),点D是线段AB上任意一点(点D不与A,B重合),过点D作AB的垂线l.点C是l上一点,且∠ACB是锐角,连结AC、BC,作AE⊥BC于点E,交CD于点H,连结BH,设△ABC面积为S1,△ABH面积为S2,则S1•S2的最大值是16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某地拟召开一场安全级别较高的会议,预估将有4000至7000名人员参加会议,为了确保会议的安全,会议组委会决定对每位入场人员进行安全检查,现了解到安检设备有门式安检仪和手持安检仪两种:门式安检仪每台3000元,需安检员2名,每分钟可通过10人;手持安检仪每只500元,需安检员1名,每分钟可通过2人,该会议中心共有6个不同的入口,每个入口都有5条通道可供使用,每条通道只可安放一台门式安检仪或一只手持安检仪,每位安检员的劳务费用均为200元.(安检总费用包括安检设备费用和安检员的劳务费用)
现知道会议当日人员从上午9:00开始入场,到上午9:30结束入场,6个入口都采用相同的安检方案,所有人员须提前到达并根据会议通知从相应入口进入
(1)如果每个入口处,只有2个通道安放门式安检仪,而其余3个通道均为手持安检仪,在这个安检方案下,请问:在规定时间内可通过多少名人员?安检所需要的总费用为多少元?
(2)请你设计一个安检方案,确保安检工作的正常进行,同时使得安检所需要的总费用尽可能少.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,正方形ABCD的边长为6,点E在边AB上,且AE=2BE,过点A作直线CE的垂线AF交CB的延长线于点G,连接BF,则BF的长为$\frac{6}{5}\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在△ABC中,∠BAC=90°,AB=AC,D为BC中点,且AE=CF.求证:△AED≌△CFD.

查看答案和解析>>

同步练习册答案