【题目】某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?
【答案】(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.
【解析】(1)找出当x=6时,y1、y2的值,二者作差即可得出结论;
(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;
(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t的一元一次方程,解之即可得出结论.
(1)当x=6时,y1=3,y2=1,
∵y1﹣y2=3﹣1=2,
∴6月份出售这种蔬菜每千克的收益是2元.
(2)设y1=mx+n,y2=a(x﹣6)2+1.
将(3,5)、(6,3)代入y1=mx+n,
,解得:
,
∴y1=﹣x+7;
将(3,4)代入y2=a(x﹣6)2+1,
4=a(3﹣6)2+1,解得:a=,
∴y2=(x﹣6)2+1=
x2﹣4x+13.
∴y1﹣y2=﹣x+7﹣(
x2﹣4x+13)=﹣
x2+
x﹣6=﹣
(x﹣5)2+
.
∵﹣<0,
∴当x=5时,y1﹣y2取最大值,最大值为,
即5月份出售这种蔬菜,每千克的收益最大.
(3)当t=4时,y1﹣y2=﹣x2+
x﹣6=2.
设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,
根据题意得:2t+(t+2)=22,
解得:t=4,
∴t+2=6.
答:4月份的销售量为4万千克,5月份的销售量为6万千克.
科目:初中数学 来源: 题型:
【题目】如图, ,且
,直线
经过点
.设
,
于点
,将射线
绕点
按逆时针方向旋转
,与直线
交于点
.
(1)当时,
;
(2)求证: ;
(3)若的外心在其内部,直接写出
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小立设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:如图1,直线l及直线l外一点A.
求作:直线AD,使得.
作法:如图2,
①在直线l上任取一点B,连接AB;
②以点B为圆心,AB长为半径画弧,交直线l于点C;
③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);
④作直线AD.
所以直线AD就是所求作的直线.
根据小立设计的尺规作图过程,
(1).使用直尺和圆规,补全图形;(保留作图痕迹)
(2)2.完成下面的证明.(说明:括号里填推理的依据)
证明:连接CD.
∵,
∴四边形ABCD是___________(_________________).
∴(_____________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象与
轴交于
、
两点(点
在点
的左侧),与
轴交于点
,且
,顶点为
.
(1)求二次函数的解析式;
(2)点为线段
上的一个动点,过点
作
轴的垂线
,垂足为
,若
,四边形
的面积为
,求
关于
的函数解析式,并写出
的取值范围;
(3)探索:线段上是否存在点
,使
为等腰三角形?如果存在,求出点
的坐标;如果不存在,请说呀理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),弧AA1是以点B为圆心,BA为半径的圆弧;弧A1A2是以点O为圆心,OA1为半径的圆弧;弧A2A3是以点C为圆心,CA2为半径的圆弧;弧A3A4是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,则点 A4的坐标是____,那么 A4n+1的坐标为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点在
轴正半轴上,点
在
轴正半轴上,
为坐标原点,
,过点
作
于点
:过点
作
于点
:过点
作
于点
:过点
作
于点
…以此类推,点
的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),4x+2<kx+b<0的解集为( )
A.x<﹣2B.﹣2<x<﹣1C.x<﹣1D.x>﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB=,BC=8,∠B=60°,将平行四边形ABCD沿EF折叠,点D恰好落在边AB的中点D′处,折叠后点C的对应点为C′,D′C′交BC于点G,∠BGD′=32°.
(1)求∠D′EF的度数;
(2)求线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.
(1)△GEF是等腰三角形吗?请说明理由;
(2)若CD=4,GD=8,求HF的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com