精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知AB是⊙O的直径,AC是弦,且平分∠BAD,AD⊥CD,垂足为D,交⊙O于点E
(1)求证:CD是⊙O的切线;
(2)若CD=2,AD=2
3
,求⊙O的半径;
(3)在(2)的条件下,求图中阴影部分的面积.
分析:(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD是⊙O的切线;
(2)首先由勾股定理求出AC,再连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性质即可解决问题;
(3)连接OE,OC,则三角形OAE为等边三角形,角COE为60度,阴影部分面积可以分别求出:上一部分:是个弓形,圆心角等于60度,半径已经求出,因而面积可以求出,下一部分,用梯形OCDE面积减去扇形OCE面积即可.
解答:精英家教网(1)证明:连接OC.
∵OA=OC(⊙O的半径),
∴∠OCA=∠OAC(等边对等角);
又∵AC平分∠BAD,
∴∠OAC=∠CAD,
∴∠ACO=∠CAD(等量代换),
∴OC∥AD(内错角相等,两直线平行);
而AD⊥CD,
∴OC⊥CD,即CD是⊙O的切线;

(2)解:∵AD⊥CD,
∴在Rt△ADC中,
AC=
22+(2
3
)
2
=4,精英家教网
连接BC,则∠ACB=90°
∵∠DAC=∠OAC
∴△ADC∽△ACB
AD
AC
=
AC
AB

∴AB=
AC2
AD
=
42
2
3
=
8
3
3

∴OB=
1
2
AB=
1
2
×
8
3
3
=
4
3
3

所以⊙O的半径为
4
3
3


(3)解:连接OE、OC,精英家教网
则△OAE为等边三角形,
∴∠AOE=∠AEO=∠COE=60°,
∴扇形AOE的面积=扇形OCE的面积,
∴△AOE和梯形OCDE的高为:
4
3
3
•sin60°=
4
3
3
×
3
2
=2,
∴DE=AD-AE=2
3
-
4
3
3
=
2
3
3

所以图中阴影部分的面积=(扇形AOE的面积-△AOE的面积)+(梯形OCDE的面积-扇形OCE的面积)
=扇形AOE的面积-△AOE的面积+梯形OCDE的面积-扇形OCE的面积
=梯形OCDE的面积-△AOE的面积
=
1
2
×(
4
3
3
+
2
3
3
)×2-
1
2
×
4
3
3
×2=
2
3
3
(平方单位),
所以图中阴影部分的面积为
2
3
3
(平方单位).
点评:此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的性质及已知条件证明三角形相似即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案