精英家教网 > 初中数学 > 题目详情
如图,正方形A1B1B2C1,A2B2B3C2,A3B3B4C3,…,AnBnBn+1Cn,按如图所示放置,使点A1、A2、A3、A4、…、An在射线OA上,点B1、B2、B3、B4、…、Bn在射线OB上.若∠AOB=45°,OB1=1,图中阴影部分三角形的面积由小到大依次记作S1,S2,S3,…,Sn,则Sn=   
【答案】分析:根据正方形性质和等腰直角三角形性质得出OB1=A1B1=1,求出A1C1=A2C1=1,A2C2=A3C2=2,A3C3=A4C3=4,根据三角形的面积公式求出S1=×2×2,S2=×21×21,S3=×22×22,推出Sn=×2n-1×2n-1,求出即可.
解答:解:∵四边形A1B1B2C1是正方形,∠O=45°,
∴∠OA1B1=45°,
∴OB1=A1B1=1,
同理A1C1=A2C1=1,
即A2C2=1+1=2=A3C2
A3C3=A4C3=2+2=4,
…,
∴S1=×1×1=×2×2
S2=×2×2=×21×21
S3=×4×4=×22×22
S4=×8×8=×23×23

∴Sn=×2n-1×2n-1==22n-3
故答案为:22n-3
点评:本题考查了正方形性质,等腰直角三角形性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,题目比较好,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,正方形OA1B1C1的边长为2,以O为圆心、OA1为半径作弧A1C1交OB1于点B2,设弧A1C1与边A1B1、B1C1围成的阴影部分面积S1;然后以OB2为对角线作正方形OA2B2C2,又以O为圆心、OA2为半径作弧A2C2交OB2于点B3,设弧A2C2与边A2B2、B2C2围成的阴影部分面积为S2;…,按此规律继续作下去,设弧AnCn与边AnBn、BnCn围成的阴影部分面积为Sa.则S1=
 
,S2=
 
,…,Sn=
 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年辽宁省盘锦市四完中九年级(上)第四次月考数学试卷(解析版) 题型:填空题

如图,正方形OA1B1C1的边长为2,以O为圆心、OA1为半径作弧A1C1交OB1于点B2,设弧A1C1与边A1B1、B1C1围成的阴影部分面积S1;然后以OB2为对角线作正方形OA2B2C2,又以O为圆心、OA2为半径作弧A2C2交OB2于点B3,设弧A2C2与边A2B2、B2C2围成的阴影部分面积为S2;…,按此规律继续作下去,设弧AnCn与边AnBn、BnCn围成的阴影部分面积为Sa.则S1=    ,S2=    ,…,Sn=   

查看答案和解析>>

科目:初中数学 来源:2009-2010学年浙江省丽水市莲都区九年级(上)第三次月考数学试卷(解析版) 题型:填空题

如图,正方形OA1B1C1的边长为2,以O为圆心、OA1为半径作弧A1C1交OB1于点B2,设弧A1C1与边A1B1、B1C1围成的阴影部分面积S1;然后以OB2为对角线作正方形OA2B2C2,又以O为圆心、OA2为半径作弧A2C2交OB2于点B3,设弧A2C2与边A2B2、B2C2围成的阴影部分面积为S2;…,按此规律继续作下去,设弧AnCn与边AnBn、BnCn围成的阴影部分面积为Sa.则S1=    ,S2=    ,…,Sn=   

查看答案和解析>>

科目:初中数学 来源:2010年北京市东城区中考数学二模试卷(解析版) 题型:填空题

如图,正方形OA1B1C1的边长为2,以O为圆心、OA1为半径作弧A1C1交OB1于点B2,设弧A1C1与边A1B1、B1C1围成的阴影部分面积S1;然后以OB2为对角线作正方形OA2B2C2,又以O为圆心、OA2为半径作弧A2C2交OB2于点B3,设弧A2C2与边A2B2、B2C2围成的阴影部分面积为S2;…,按此规律继续作下去,设弧AnCn与边AnBn、BnCn围成的阴影部分面积为Sa.则S1=    ,S2=    ,…,Sn=   

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市萧山区中考数学模拟试卷47(河庄镇中 陈国亚)(解析版) 题型:填空题

(2010•东城区二模)如图,正方形OA1B1C1的边长为2,以O为圆心、OA1为半径作弧A1C1交OB1于点B2,设弧A1C1与边A1B1、B1C1围成的阴影部分面积S1;然后以OB2为对角线作正方形OA2B2C2,又以O为圆心、OA2为半径作弧A2C2交OB2于点B3,设弧A2C2与边A2B2、B2C2围成的阴影部分面积为S2;…,按此规律继续作下去,设弧AnCn与边AnBn、BnCn围成的阴影部分面积为Sa.则S1=    ,S2=    ,…,Sn=   

查看答案和解析>>

同步练习册答案