精英家教网 > 初中数学 > 题目详情

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论,其中正确结论是( )

A.b2<4ac
B.2a+b=0
C.a+b+c>0
D.若点B( ,y1)、C( ,y2)为函数图象上的两点,则y1<y2

【答案】D
【解析】解:A、∵由函数图象可知抛物线与x轴有2个交点,
∴b2﹣4ac>0即b2>4ac,故本题选项错误;
B、∵对称轴为直线x=﹣1,
∴﹣ =﹣1,即2a﹣b=0,故本选项错误;
C、∵抛物线与x轴的交点A坐标为(﹣3,0)且对称轴为x=﹣1,
∴抛物线与x轴的另一交点为(1,0),
∴将(1,0)代入解析式可得,a+b+c=0,故本选项错误;
D、∵抛物线的对称轴是直线x=﹣1,抛物线的开口向下,
∴当x>﹣1时,y随x的增大而减小,
∵﹣1< ,点B( ,y1)、C( ,y2)为函数图象上的两点,
∴y1<y2 , 故本选项正确;
故选D.
【考点精析】掌握二次函数的图象和二次函数的性质是解答本题的根本,需要知道二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一次暑假旅游中,小亮在仙岛湖的游船上(A处),测得湖西岸的山峰太婆尖(C处)和湖东岸的山峰老君岭(D处)的仰角都是45°.游船向东航行100米后(B处),测得太婆尖,老君岭的仰角分别为30°,60°.试问太婆尖、老君岭的高度为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC与△DCE都是等边三角形,BCE三点在同一条直线上,若AB=6,BAD=150°,则DE的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥ABE,FAC上,BD=DF;

证明:(1)CF=EB.

(2)AB=AF+2EB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC由△A′B′C′绕O点旋转180°而得到,则下列结论不成立的是( )

A.点A与点A′是对应点
B.BO=B′O
C.∠ACB=∠C′A′B′
D.AB∥A′B′

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径CD为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).

(1)如图,建立直角坐标系,求此抛物线的解析式;
(2)如果竖直摆放7个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶至多多少个时,网球可以落入桶内?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=AD,AC=5,DAB=DCB=90°,则四边形ABCD的面积为(  )

A. 15 B. 12.5 C. 14.5 D. 17

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1在平面直角坐标系中.等腰Rt△OAB的斜边OA在x轴上.P为线段OB上﹣动点(不与O,B重合).过P点向x轴作垂线.垂足为C.以PC为边在PC的右侧作正方形PCDM.OP= t、OA=3.设过O,M两点的抛物线为y=ax2+bx.其顶点N(m,n)

(1)写出t的取值范围 , 写出M的坐标:();
(2)用含a,t的代数式表示b;
(3)当抛物线开向下,且点M恰好运动到AB边上时(如图2)
①求t的值;
②若N在△OAB的内部及边上,试求a及m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2﹣4x+1﹣p2=0.
(1)若p=2,求原方程的根;
(2)求证:无论p为何值,方程总有两个不相等的实数根.

查看答案和解析>>

同步练习册答案