分析 (1)利用邻补角的性质和三角形内角和定理解题;
(2)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.
解答 解:(1)∵在△BAD中,∠B=∠C=∠40°,∠BDA=115°,
∴∠EDC=180°-∠ADB-∠ADE=180°-115°-40°=25°.
∠DEC=180°-∠C-∠EDC=180°-40°-25°=115°,
故答案为:25,115;
(2)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,
∵∠BDA=110°时,
∴∠ADC=70°,
∵∠C=40°,
∴∠DAC=70°,
∴△ADE的形状是等腰三角形;
∵当∠BDA的度数为80°时,
∴∠ADC=100°,
∵∠C=40°,
∴∠DAC=40°,
∴△ADE的形状是等腰三角形.
点评 此题主要考查学生对等腰三角形的判定与性质,三角形外角的性质等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强,但难度不大,属于基础题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 8 | B. | 8和10 | C. | 10 | D. | 8 或10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com