【题目】如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H.
(1)求证:;
(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;
(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.
【答案】详见解析
【解析】
(1)由相似三角形,列出比例关系式,即可证明.
(2)首先求出矩形EFPQ面积的表达式,然后利用二次函数求其最大面积.
(3)本问是运动型问题,弄清矩形EFPQ的运动过程:
当0≤t≤2时,如答图①所示,此时重叠部分是一个矩形和一个梯形;
当2<t≤4时,如答图②所示,此时重叠部分是一个三角形.
解:(1)证明:∵矩形EFPQ,∴EF∥BC.
∴△AHF∽△ADC,∴.
∵EF∥BC,∴△AEF∽△ABC,∴.
∴.
(2)∵∠B=45°,∴BD=AD=4,∴CD=BC﹣BD=5﹣4=1.
∵EF∥BC,∴△AEH∽△ABD,∴.
∵EF∥BC,∴△AFH∽△ACD,∴.
∴,即,∴EH=4HF.
已知EF=x,则EH=.
∵∠B=45°,∴EQ=BQ=BD﹣QD=BD﹣EH=4﹣.
,
∴当x=时,矩形EFPQ的面积最大,最大面积为5.
(3)由(2)可知,当矩形EFPQ的面积最大时,矩形的长为,宽为.
在矩形EFPQ沿射线AD的运动过程中:
(I)当0≤t≤2时,如答图①所示,
设矩形与AB、AC分别交于点K、N,与AD分别交于点H1,D1,此时DD1=t,H1D1=2,
∴HD1=HD﹣DD1=2﹣t,HH1=H1D1﹣HD1=t,AH1=AH﹣HH1=2﹣t.
∵KN∥EF,∴,即.
解得.
.
(II)当2<t≤4时,如答图②所示,
设矩形与AB、AC分别交于点K、N,与AD交于点D2.此时DD2=t,AD2=AD﹣DD2=4﹣t.
∵KN∥EF,∴,即.
解得.
.
综上所述,S与t的函数关系式为:.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.
(1)如图1,当点C1在线段CA的延长线时,求∠CC1A1的度数;
(2)已知AB=6,BC=8,
①如图2,连接AA1,CC1,若△CBC1的面积为16,求△ABA1的面积;
②如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应是点P1,直接写出线段EP1长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.
(1)求b的值;
(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;
(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=30°,点B1在边OM上,且OB1=3,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△An﹣1AnCn﹣1的高为______.(用含正整数n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A的坐标为(-2,0),等边三角形AOC经过平移或轴对称或旋转对称都可以得到△OBD。
(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是 个单位长度;△AOC与△OBD关于直线对称,则对称轴是 ;△AOC绕原点O顺时针旋转得到△OBD,则旋转角可以是 度;
(2)连接AD,交OC于点E,求∠AEO的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.
证明:(1)BD=DC;(2)DE是⊙O切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,∠C=90°,AB=9,,把△ABC 绕着点C旋转,使得点A落在点A′,点B落在点B′.若点A′在边AB上,则点B、B′的距离为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程,
(1)求证:该一元二次方程总有两个实数根;
(2)若该方程只有一个小于4的根,求m的取值范围;
(3)若x1,x2为方程的两个根,且n=x12+x22﹣4,判断动点所形成的数图象是否经过点,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com