精英家教网 > 初中数学 > 题目详情

已知:关于x一元二次方程x2-2x+m=0有两个实数根,则m的取值范围是________

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、已知:关于x的一元二次方程ax2+bx+c=-3的一个根为x=2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为
(2,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程x2-2x+c=0的一个实数根为3.
(1)求c的值;
(2)二次函数y=x2-2x+c,当-2<x≤2时,y的取值范围;
(3)二次函数y=x2-2x+c与x轴交于点A、B(A左B右),顶点为点C,问:是否存在这样的点P,以P为位似中心,将△ABC放大为原来的2倍后得到△DEF(即△EDF∽△ABC,相似比为2),使得点D、E恰好在二次函数上且DE∥AB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,二次函数图象的顶点为,与轴交于两点(点右侧),点关于直线:对称.

(1)求两点坐标,并证明点在直线上;

(2)求二次函数解析式;

(3)过点作直线交直线点,分别为直线和直线上的两个动点,连接,求和的最小值.

【解析】(1)根据一元二次方程求得A点坐标,代入直线求证,(2)通过点H、B关于直线L对称,求得H的坐标,从而解出二次函数的解析式,(3)先求出HN+MN的最小值是MB, 再求出BM+MK的最小值是BQ,即和的最小值

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省无锡市新区九年级下学期期中考试数学卷(解析版) 题型:解答题

已知如图,二次函数图象的顶点为,与轴交于两点(点右侧),点关于直线:对称.

(1)求两点坐标,并证明点在直线上;

(2)求二次函数解析式;

(3)过点作直线交直线点,分别为直线和直线上的两个动点,连接,求和的最小值.

【解析】(1)根据一元二次方程求得A点坐标,代入直线求证,(2)通过点H、B关于直线L对称,求得H的坐标,从而解出二次函数的解析式,(3)先求出HN+MN的最小值是MB, 再求出BM+MK的最小值是BQ,即和的最小值

 

查看答案和解析>>

同步练习册答案