精英家教网 > 初中数学 > 题目详情
1.已知:在△ABC中,AB=AC.
(1)尺规作图:作△ABC的角平分线AD,延长AD至E点,使得DE=AD;(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,连接BE,CE,求证:四边形ABEC是菱形.

分析 (1)直接利用角平分线的作法得出E点位置进而得出答案;
(2)利用菱形的判定方法得出答案.

解答 (1)解:如图所示:AD,DE为所求;    

(2)证明:∵AB=AC,AD平分∠CAB,
∴CD=BD,AD⊥BC,
∵AD=DE,
∴四边形ABEC是菱形.

点评 此题主要考查了菱形的判定以及复杂作图,正确把握菱形的判定方法是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,A(t,0),B(t+$\sqrt{3}$,0),对于线段AB和x轴上方的点P给出如下定义:当∠APB=60°时,称点P为AB的“等角点”.
(1)若t=-$\frac{\sqrt{3}}{2}$,在点C(0,$\frac{3}{2}$),D($\frac{\sqrt{3}}{2}$,1),E(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$)中,线段AB的“等角点”是C、D;
(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),∠OMN=30°.
①线段AB的“等角点”P在直线MN上,且∠ABP=90°,求点P的坐标;
②在①的条件下,过点B作BQ⊥PA,交MN于点Q,求∠AQB的度数;
③若线段AB的所有“等角点”都在△MON内部,则t的取值范围是1-$\frac{\sqrt{3}}{2}$<t<4-$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.某校260名学生参加植树活动,要求每人植4-7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有(  )
A.26名B.52名C.78名D.104名

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,直角梯形ABCD中,∠B=90°,AD∥BC,BC=2AD,点E为边BC的中点.
(1)求证:四边形AECD为平行四边形;
(2)在CD边上取一点F,联结AF、AC、EF,设AC与EF交于点G,且∠EAF=∠CAD.求证:△AEC∽△ADF;
(3)在(2)的条件下,当∠ECA=45°时.求:FG:EG的比值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),B(-3,0),与y轴交于点C,顶点为D,抛物线的对称轴与x轴的交点为E.
(1)求抛物线的解析式及E点的坐标;
(2)设点P是抛物线对称轴上一点,且∠BPD=∠BCA,求点P的坐标;
(3)若过点E的直线与抛物线交于点M、N,连接DM、DN,判断DM与DN的位置关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.第六次全国人口普查数据显示,盐城市常住人口约为821万人,用科学记数法表示821万为8.21×106

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,?OABC的顶点B、C在第一象限,点A的坐标为(3,0),D为边AB的中点,反比例函数y=$\frac{k}{x}$(k>0)的图象经过点C、D两点,若∠COA=60°,则k的值为4$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.计算:|-2|-(2016-π)0+4sin45°-$\sqrt{8}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:(x+2y)2

查看答案和解析>>

同步练习册答案