精英家教网 > 初中数学 > 题目详情
设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1、y2、y3的大小关系为()
A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2
A

试题分析:由题意抛物线开口向下,则距离抛物线的对称轴距离越远的点的纵坐标越小.
∵抛物线y=-(x+1)2+a的开口向下,对称轴为x=-1

∴y1>y2>y3
故选A.
点评:二次函数的性质是初中数学的重点,是中考必考题,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg)
10
11
13
销售量y(kg)
 
 
 
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线轴的交点为A、B,与 轴的交点为C,顶点为,将抛物线绕点B旋转,得到新的抛物线,它的顶点为D.

(1)求抛物线的解析式;
(2)设抛物线轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y轴的垂线,垂足为F,连接EF.如果P点的坐标为,△PEF的面积为S,求S与的函数关系式,写出自变量的取值范围;
(3)设抛物线的对称轴与轴的交点为G,以G为圆心,A、B两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在△ABC中,∠A = 90°,,经过这个三角形重心的直线DE // BC,分别交边ABAC于点D和点EP是线段DE上的一个动点,过点P分别作PMBCPFABPGAC,垂足分别为点MFG.设BM = x,四边形AFPG的面积为y

(1)求PM的长;
(2)求y关于x的函数解析式,并写出它的定义域;
(3)联结MFMG,当△PMF与△PMG相似时,求BM的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某水渠的横截面呈抛物线形,水面的宽为AB(单位:米)。现以AB所在直线为x轴.以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米。设抛物线解析式为

(1)求a的值;
(2)点C(一1,m)是抛物线上一点,点C关于原点D的对称点为点D,连接CD、BC、BD,求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,两条抛物线y1=-x2+1、y2=-x2-1 与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为   (  )
A.8B.6C.10D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在直角坐标平面上,横坐标与纵坐标都是整数的点称为整点.如果将二次函数
轴所围成的封闭图形染成红色,则在此红色内部区域及其边界上的
整点个数是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=2(x+1)2-5的顶点坐标是               .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是       (填序号).

查看答案和解析>>

同步练习册答案