精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.求证:DE是⊙O的切线.
证明:连接OD;
∵OD=OB,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠C=∠ODB,
∴ODAC,
∴∠ODE=∠DEC;
∵DE⊥AC,
∴∠DEC=90°,
∴∠ODE=90°,
即DE⊥OD,
∴DE是⊙O的切线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的弦,C为劣弧AB的中点.
(1)若⊙O的半径为5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断AD与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M.
(Ⅰ)求证:MO=
1
2
BC;
(Ⅱ)求证:PC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,直线AB经过点A(-4,0)、B(0,4),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O的割线PAB交于⊙O于点A、B,PA=4cm,AB=5cm,PO=7.5cm,则⊙O的直径长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,AC+BC=8,∠ACB的平分线交AB于点O,以O为圆心的⊙O与AC相切于点D.
(1)求证:⊙0与BC相切;
(2)当AC=2时,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D.求证:
(1)∠AOC=2∠ACD;
(2)AC2=AB•AD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是(  )
A.70°B.40°C.50°D.20°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,⊙O1和⊙O2内切于点P,⊙O2的弦BE与⊙O1相切于C,PB交⊙O1于D,PC的延长线交⊙O2于A,连接AB,CD,PE.
(1)求证:①∠BPA=∠EPA;②
AB
AC
=
BC
BD

(2)若⊙O1的切线BE经过⊙O2的圆心,⊙O1、⊙O2的半径分别是r、R,其中R≥2r,如图2,求证:PC•AC是定值.

查看答案和解析>>

同步练习册答案