精英家教网 > 初中数学 > 题目详情

如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则cosα=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:过点D作DE⊥l1于点E并反向延长交l4于点F,根据同角的余角相等求出∠α=∠CDF,根据正方形的每条边都相等可得AD=DC,然后利用“AAS”证明△ADE和△DCF全等,根据全等三角形对应边相等可得DF=AE,再利用勾股定理列式求出AD的长度,然后根据锐角的余弦值等于邻边比斜边列式计算即可得解.
解答:解:如图,过点D作DE⊥l1于点E并反向延长交l4于点F,
在正方形ABCD中,AD=DC,∠ADC=90°,
∵∠α+∠ADE=90°,∠ADE+∠CDF=180°-90°=90°,
∴∠α=∠CDF,
在△ADE和△DCF中,
∴△ADE≌△DCF(AAS),
∴DF=AE,
∵相邻两条平行直线间的距离都是1,
∴DE=1,AE=2,
根据勾股定理得,AD===
所以,cosα===
故选A.
点评:本题考查了全等三角形的判定与性质,正方形的性质,锐角三角形函数的定义,作辅助线,构造出全等三角形以及∠α所在的直角三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

6、如图,已知直线l1,l2,l3相交于点O,∠1=35°,∠2=25°,则∠3等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•郯城县一模)如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则cosα=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•黔南州)如图,已知直线l1∥l2,∠1=50°,那么∠2=
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知直线l1∥l2,且l3、l4和l1、l2分别交于点A、B和点C、D,点P在AB上,设∠ADP=∠1,∠DPC=∠2,∠BCP=∠3.
(1)探究∠1、∠2、∠3之间的关系,并说明你的结论的正确性.
(2)若点P在A、B两点之间运动时(点P和A、B不重合),∠1、∠2、∠3 之间的关系
不会
不会
发生变化(填会或不会)
(3)如果点P在A、B两点外侧运动时,(点P和A、B不重合)
①当点P在射线AM上时,猜想∠1、∠2、∠3之间的关系为
∠2=∠3-∠1
∠2=∠3-∠1

②当点P在射线BN上时,猜想∠1、∠2、∠3之间的关系为
∠3=∠1-∠2
∠3=∠1-∠2
(不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线l3上有点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上.
(1)如果点P在C、D之间运动时,试说明∠PAC+∠PBD=∠APB;
(2)如果点P在直线l1的上方运动时,试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
(3)如果点P在直线l2的下方运动时,∠PAC,∠APB,∠PBD之间的关系又是如何?
∠PAC=∠PBD+∠APB
∠PAC=∠PBD+∠APB
(直接写出结论)

查看答案和解析>>

同步练习册答案