精英家教网 > 初中数学 > 题目详情
用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为   
【答案】分析:根据正六边形的一个内角为120°,可求出正六边形密铺时需要的正多边形的内角,继而可求出这个正多边形的边数.
解答:解:两个正六边形结合,一个公共点处组成的角度为240°,
故如果要密铺,则需要一个内角为120°的正多边形,
而正六边形的内角为120°,
故答案为:6.
点评:此题考查了平面密铺的知识,解答本题关键是求出在密铺条件下需要的正多边形的一个内角的度数,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•河北)用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:

用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1.用n个全等的正六边形按这种方式拼接,如图2,若围成一圈后中间也形成一个正多边形,则n的值为(  )

查看答案和解析>>

科目:初中数学 来源:2013年河北省邢台市沙河市二十冶三中中考数学模拟试卷(解析版) 题型:填空题

用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为   

查看答案和解析>>

科目:初中数学 来源:2012年河北省中考数学试卷(解析版) 题型:填空题

用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为   

查看答案和解析>>

同步练习册答案