【题目】如图,点在正方形的边上,连接,设点关于直线的对称点为点,且点在正方形内部,连接并延长交边于点,过点作交射线于点,连接.若,则的长为__________.
【答案】
【解析】
根据对称得:△ABE≌△AB'E,再由HL证明Rt△AB'F≌Rt△ADF,即可得B'F=DF,如图,作辅助线,构建BM=BE,先证明∠EAF=45°,得AE=EG,证明△AME≌△ECG,则EM=CG,根据等腰直角的性质得:EM=BE,即可得出结论.
解:如图,在线段AB上截取BM,使BM=BE,连接ME,
∵四边形ABCD是正方形,
∴AD=AB,∠B=∠D=90°,
∵点B关于直线AE的对称点为B',
∴△ABE≌△AB'E,
∴∠BAE=∠B'AE,AB=AB'=AD,∠AB'E=∠B=90°,
∴∠AB' F=90°,
在Rt△AB'F和Rt△ADF中,
∵ ,
∴Rt△AB'F≌Rt△ADF(HL),
∴∠DAF=∠B'AF,
∵AB=BC,BM=BE,
∴AM=EC,
∵∠BAE=∠B'AE,∠DAF=∠B'AF,
又∵∠BAD=90°,
∴2∠B'AE +2∠B'AF=90°,
∴∠B'AE +∠B'AF=45°,
即∠EAF=45°,
∵AE⊥EG,
∴∠AEG=90°,
∴△AEG是等腰直角三角形,
∴∠AEB+∠CEG=∠AEB+∠BAE=90°,AE=EG,
∴∠BAE=∠CEG,
在△AME和△ECG中,
∵,
∴△AME≌△ECG(SAS),
∴EM=CG,
Rt△BEM中,∠B=90°,BM=BE,
∴EM=BE,
∴CG=BE,
∵,
∴CG=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.
(1)求证:CD是⊙O的切线;
(2)若∠D=30°,BD=2,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC于点D,点E为BC的中点,连接DE.
(1)求证:DE是半圆⊙O的切线;
(2)若∠BAC=30°,DE=2,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1与l2相交于点P,点P横坐标为﹣1,l1的解析式为y=x+3,且l1与y轴交于点A,l2与y轴交于点B,点A与点B恰好关于x轴对称.
(1)求点B的坐标;
(2)求直线l2的解析式;
(3)若点M为直线l2上一动点,直接写出使△MAB的面积是△PAB的面积的的点M的坐标;
(4)当x为何值时,l1,l2表示的两个函数的函数值都大于0?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:
(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.
(2)在图2扇形统计图中,m的值为_____,表示“D等级”的扇形的圆心角为_____度;
(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的
一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运
动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请阅读下列材料,并完成相应的任务.
三等分任意角问题是数学史上一个著名的问题,直到1837年,数学家才证明了“三等分任意角”是不能用尺规完成的.
在探索中,出现了不同的解决问题的方法
方法一:
如图(1),四边形ABCD是矩形,F是DA延长线上一点,G是CF上一点,CF与AB交于点E,且∠ACG=∠AGC,∠GAF=∠F,此时∠ECB=∠ACB.
方法二:
数学家帕普斯借助函数给出一种“三等分锐角”的方法(如图(2)):将给定的锐角∠AOB置于平面直角坐标系中,边OB在x轴上,边OA与函数y=的图象交于点P,以点P为圆心,以2OP长为半径作弧交图象于点R.过点P作x轴的平行线,过点R作y轴的平行线,两直线相交于点M,连接OM得到∠AOB,过点P作PH⊥x轴于点H,过点R作RQ⊥PH于点Q,则∠MOB=∠AOB.
(1)在“方法一”中,若∠ACF=40°,GF=4,求BC的长.
(2)完成“方法二”的证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,AC与BD为对角线,∠BCA=∠BAD,过点A作AE∥BC交CD的延长线于点E.
(1)求证:EC=AC;
(2)若cos∠ADB=,BC=10,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明从家出门去遛狗(哈士奇,又名“撤手没”),当走到200米时狗绳突然断裂,脱了缰的哈士奇飞速跑开,小明也快速追狗,已知狗速是人速的2倍,4分钟时哈土奇听到小明的呼喊声,调头跑向小明,很快人狗相遇,但是哈士奇并没有停留的意思,继续跑向家中,小明调头继续追赶.脱缰之后狗和人的速度都不变.遛狗路程s(米)与时间t(分钟)之间的函数图象如图所示,下列说法:①a=500;②Y点纵坐标为580;③b=2;④c=7;⑤d=9;其中正确的个数是( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com