精英家教网 > 初中数学 > 题目详情

【题目】某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)

1)分别求出y1y2的函数关系式(不写自变量取值范围);

2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?

【答案】1y1;y2x24x+13;(25月出售每千克收益最大,最大为

【解析】

1)观察图象找出点的坐标,利用待定系数法即可求出y1y2的解析式;

2)由收益W=y1-y2列出Wx的函数关系式,利用配方求出二次函数的最大值.

解:(1)设y1kx+b,将(35)和(63)代入得,,解得

∴y1=﹣x+7

y2ax62+1,把(34)代入得,

4a362+1,解得a

∴y2x62+1,即y2x24x+13

2)收益Wy1y2

=﹣x+7﹣(x24x+13

=﹣x52+

∵a=﹣0

x5时,W最大值

5月出售每千克收益最大,最大为元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°,得到△A1B1C1,则旋转中心的坐标是(  )

A.00B.10C.1,﹣1D.1,﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ADBECF,它们依次交直线l1l2于点ABC和点DEFAC=14

1)求ABBC的长;

2)如果AD=7CF=14,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AD+2,已知点E是边AB上的一动点(不与AB重合)将△ADE沿DE对折,点A的对应点为P,当△APB是等腰三角形时,AE_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数ax2+bx+c的部分对应值如表,利用二次的数的图象可知,当函数值y0时,x的取值范围是(  )

x

3

2

1

0

1

2

y

12

5

0

3

4

3

A.0x2B.x0x2C.1x3D.x<﹣1x3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD.

1)作∠B的平分线交ADE点。(用尺规作图法,保留作图痕迹,不要求写作法)

2)若ABCD的周长为10CD=2,求DE的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′CD于点E.若AB=6,则AEC的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,∠A60°AB2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:各类方程的解法

求解一元一次方程,根据等式的基本性质,把方程转化为的形式:求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为二元一次方程组来解;求解一元二次方程,把它转化为两个一元一次方程来解:求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想一一转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程,可以通过因式分解把它转化为,解方程,可得方程的解.利用上述材料给你的启示,解下列方程;

1

2

查看答案和解析>>

同步练习册答案